| 研究生: |
鄭智洋 Kevin Tseng |
|---|---|
| 論文名稱: |
探討兩階段式照光發酵槽對Pseudomonas taetrolens發酵乳清生產乳糖酸的影響 Enhanced lactobionic acid production from whey by Pseudomonas taetrolens by two-stage culture photobioreactor |
| 指導教授: |
徐敬衡
Chin-Hang Shu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 乳糖酸 、乳清 、Pseudomonas taetrolens 、乳製品廢棄物 |
| 外文關鍵詞: | Lactobionic acid, Whey, Pseudomonas taetrolens, Dairy waste |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
乳糖酸為經濟價值高的產品,用途廣泛,醫學工程、藥物工程、化妝品工程以及食品工程等皆能添加。全球目前約有30%的乳製品廢棄物,乳清,沒有被善加利用,長期大都以丟棄或是做為動物飼料處理。若可利用發酵程序將乳製品廢棄物生產附加價值高的產品,不但能兼具能源與環保雙重價值,以操作與成本考量,也相當具有競爭力。目前已發現可將乳清利用Pseudomonas taetrolens發酵產生附加價值高的乳糖酸。
先前的研究發現大部分菌種照射紅光可促進其氧化能力,而本實驗利用此特性,將具有光源接受器的Pseudomonas taetrolens照射紅光以及藍光,探討其對生產乳糖酸的影響。目前由搖瓶實驗數據可知,照射500 lux紅光可促進Pseudomonas taetrolens發酵乳清生產乳糖酸,乳糖酸產量與不照光對照組相比,18.5 g/L由提升到23.8 g/L,另一方面照射100 lux藍光則是在菌種生長階段能促進菌種的生長,發酵第12小時菌種與不照光對照組相比,3.78 g/L由提升到5.61 g/L。因此,利用此特性進行兩階段方式發酵,發酵前24小時照射100 lux藍光促進菌體生長,隨後照射500 lux紅光促進菌體氧化能力,實驗結果發現,兩階段式照射能縮短發酵時間,增加發酵效率。
Lactobionic acid(LBA) finds extensive applications in the fields of pharmaceuticals, cosmetics and medicine. Currently, about 30% of annual world cheese whey production remains underutilized, ending up as waste or being employed as animal feed. Therefore, the methodology of fermentation by using cheese whey as an inexpensive raw to generate high value-added product LBA demonstrates an environmental and economic objective. In the recent studies, they can promote the oxidation activity of bacteria by exposing to red light in the fermentation process. In additions, Pseudomonas contain the photoreceptors of red light and the modulated effect by blue light. In this study, we used the two-stage culture light bioreactor to enhance lactobionic acid production from whey by Pseudomonas taetrolens.
A light bioreactor with shake-flasks can promote the first 12 hours dry cell weight by exposing to 100lux blue light; in addition, exposing to 500lux red light can improve the production of LBA from 18.5g/L to 23. 8g/L. Therefore, in order to ferment in the best environment, it is suggested that exposing to 100 lux blue light during the growth phase, which is the first day in fermentation process, and then change to the 500 lux red light for the oxidative phase by the two-stage culture light bioreactor. The photobioreactor experiment shows that the two-stage culture can shorten the fermentation time.
[1] Gerling, K.G., , “Large scale production of lactobionic acid-use and new applications.,” Int. Dairy Fed. 9804, p. 251–256, 1998.
[2] Oskarsson, H., Frankenberg, M., Annerling, A., Holmberg, K., , “Adsorption ofnovel alkyl aminoamide sugar surfactants at tailor-made surfaces.,” J. Surfact. Deterg. 10, p. 41–52, 2007.
[3] D'Alessandro, A.M., Hoffman, R.M., Southard, J.H.,, “Solution development inorgan preservation: the University of Wisconsin perspective.,” Transplant. Rev.13, p. 67–77, 1999.
[4] Hart, N.A., Leuvenink, H.G.D., Ploeg, R.J.,, “New solutions in organ preservation.,” Transplant. Rev. 16, p. 131–141, 2002.
[5] Green, B.A., Yu, R.J., Van Scott, E.J., , “Clinical and cosmeceutical uses of hydroxyacids.,” Clin. Dermatol. 27, p. 49–501, 2009.
[6] Saarela, M., Hallamaa, K., Mattila-Sandholm, T., Mättö, J.,, “The effect of lactose derivatives lactulose, lactitol and lactobionic acid on the functional and technological properties of potentially probiotic Lactobacillus strains.,” Int. Dairy J. 13, pp. 291-302, 2003.
[7] Schaafsma, G.,, “Lactose and lactose derivatives as bioactive ingredients in human nutrition.,” Int. Dairy J. 18, p. 458–465, 2008.
[8] Gutiérrez, L.-F., Hamoudi, S., & Belkacemi, K., “Selective production of lactobionic acid by aerobic oxidation of lactose over gold crystallites supported on mesoporous silica.,” Applied Catalysis A: General, 402, pp. 94-103, 2011.
[9] Hendriks, H. E. J., Kuster, B. F. M., & Marin, G. B., “The effect of bismuth on the selective oxidation of lactose on supported palladium catalysts.,” Carbohydrate Research, 204, pp. 121-129, 1990.
[10] Stodola, F. H., & Lockwood, L. B., “The oxidation of lactose and maltose to bionic acids by Pseudomonas.,” Journal of Biological Chemistry, 171, pp. 213-221, 1947.
[11] Affertsholt, T. ., “Market developments and industry challenges for lactose and lactose derivatives. Presentation at IDF Symposium Lactose and Its Derivatives,” p. 14–16, 5 2007.
[12] Gänzle, M.G., Haase, G., Jelen, P., “Lactose: crystallization, hydrolysis and value-added derivatives.,” Int. Dairy J. 18, p. 685–694, 2008.
[13] Saúl Alonso, Manuel Rendueles, Mario Díaz,, “Efficient lactobionic acid production from whey by Pseudomonas taetrolens under pH-shift conditions.,” Bioresource Technology 102, p. 9730–9736, 2011.
[14] Saúl Alonso, Manuel Rendueles, Mario Díaz,, “Role of dissolved oxygen availability on lactobionic acid production from whey by Pseudomonas taetrolens.,” Bioresource Technology 109, p. 140–147, 2012.
[15] Michael A. van der Horst1, Jason Key1,2 and Klaas J. ,, “Hellingwerf1,2Photosensing in chemotrophic, non-phototrophic bacteria: let there be light sensing too.,” TRENDS in Microbiology Vol.15 No.12, pp. 554-562, 2007.
[16] Saúl Alonso, Manuel Rendueles, Mario Díaz,, “Feeding strategies for enhanced lactobionic acid production from whey by Pseudomonas taetrolens.,” Bioresource Technology 134, p. 134–142, 2013.
[17] Saúl Alonso, Manuel Rendueles, Mario Díaz ,, “Bio-production of lactobionic acid: Current status, applications and future prospects.,” Biotechnology Advances 31, p. 1275–1291, 2013.
[18] Luis-Felipe Gutiérrez a, b,c,*, Safia Hamoudi a, Khaled Belkacemi a,, “Lactobionic acid: A high value-added lactose derivative for food and pharmaceutical applications.,” International Dairy Journal 26, pp. 103-111, 2012.
[19] Pedruzzi I, Borges da Silva EA, Rodrigues AE. , “Selection of resins, equilibrium and sorption kinetics of lactobionic acid, fructose, lactose and sorbitol.,” Sep Purif Technol 2008;63, p. 600–611.
[20] R. R. H. W. P. B. L. E. Barbara A. Green, “Lactobionic Acid - a Novel Polyhydroxy Bionic Acid for Skincare”.
[21] Armarego WL, Chai CLL. , “Purification of biochemicals and related products. In: Armarego WL, Chai CLL, editors. Purification of laboratory chemicals.,” Sixth ed. Oxford: Elsevier Inc., p. 577–708, 2009.
[22] Nakano H, Kiryu T, Kiso T, Murakami H. , “Biocatalytic production of lactobionic acid.,” Hou CT, Shaw JF, editors., p. 391–404, 2010..
[23] West D., “ AHA wrinkle creams come of age.,” Chem Week , pp. 166-120, 2004.
[24] Belzer FO, D'Alessandro AM, Hoffmann RM, Knechtle SJ, Reed A, Pirsch JD, et al. , “The use of UW solution in clinical transplantation.,” Ann Surg 1992;215, p. 579–585, 1992.
[25] Nakano, H., Kiryu, T., Kiso, T., & Murakami, H., “Lactobionic acid and its biocatalytic production.,” Foods and Food Ingredients Journal of Japan, pp. 874-881, 2006.
[26] Levine, M, and Anderson, , “Two New Species of Bacteria Causing Mustiness in Eggs,” J Bacteriol 23 (4), p. 337–347, 1932.
[27] Anzai; Kim, H; Park, JY; Wakabayashi, H; Oyaizu, H et al, “Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence.,” Int J Syst Evol Microbiol 50 (4), p. 1563–89, 2000.
[28] N. R. Council, “Underutilized Resources as Animal Feedstuffs.,” National Academies Press. ISBN 978-0-309-03382-4. , p. 29, 8 1983.
[29] Frid, Anders H.; Nilsson, Mikael; Holst, Jens Juul; Björck, Inger M.E., “Effect of whey on blood glucose and insulin responses to composite breakfast and lunch meals in type 2 diabetic subjects.,” American Journal of Clinical Nutrition 82 (1), p. 69–75, 2005.
[30] 許英欽, “探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究.,” 國立中央大學化學工程與材料工程系碩士論文, 2002.
[31] Blankenshipa, J.D., et al.,, “ Production of lolone alkaloids by the grass endophyte, Neotyphodium uncinatim, in defined media.,” Phytochemistry, pp. 259-401, 2001.
[32] 陳宏文, “以回應曲面法探討樟芝高密度發酵並分析相關成分與機能性.,” 國立交通大學生物科技研究所碩士論文, 2001.
[33] Tseng, T.C., et al., , “Study on Ganoderma lucidum 1. Liquid Culture and Chemical Composition of Mycelium.,” BOT. BULL. ACAD. SINICA., pp. 149-157, 1984.
[34] Kuratsu, Y., M. Sakurai, and H. Hagino, , “Aeration-agitation effect on coenzyme Q10 production by Agrobacterium species.,” J. Ferment. Technol, pp. 305-308, 1984.
[35] 鄭艷,匡立學,李超,張玉龍*, “洋蔥假單胞菌乳糖酸發酵條件的優化,” 食品科學 Vol.33 No.11, pp. 181-184, 2012.
[36] Yang, F.C. and C.B. Liau, , “The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged cultures.,” PROCESS.BIOCHEM, pp. 547-553, 1998.
[37] Forage, R.G., D.E.F. Harrison, and D.E. Pitt, , “Effect of environment on microbialactivity.,” Comprehensive Biotechnology, pp. 253-279, 1985.
[38] Rau, U., et al., , “Enhanced glucan formation of filamentous fungi by effective mixing,oxygen limitation and fed-batch processing.,” J. IND. MICROBIOL. BIOT, pp. 19-26, 1992.
[39] Janina, P., et al., , “Seeing the rainbow: light sensing in fungi.,” Current Opinion in Microbiology, pp. 566-571, 2006.
[40] Betina, V.,, “Photoinduced Conidiation in Trichoderma viride.,” Folia Microbiol, pp. 319-224, 1995.
[41] Mooney, J.L. and L.N. Yager, , “Light is required for conidiation in Aspergillus nidulans.,” Genes and development, pp. 1473-1482, 1990.
[42] Elizabeth, M.L., , “Effect of Light Regimens and Intensities on Morphogenesis of the Discomycete Pyronema domesticum.,” Mycologia, pp. 699-712, 1979.
[43] Sargent, M.L. and W.R. Briggs, , “The effect of light on a circadian rhythm of condiation in Neurospora.,” Plant Physiology, pp. 1504-1510, 1993.
[44] Liu, Y., Q. He, and P. Cheng, , “Photoreception in Neurospora : a tale of two White Collar proteins.,” Cellular and Molecular Life Science, pp. 2131-2138, 2003.
[45] 孫楷惠, “隱球菌藍光訊息傳導分子機制之探討.,” 國立臺灣大學植物病理與微生物學研究所碩士論文, 2004.
[46] 黃俊凱, “探討光照對Saccharomyces cerevisiae生產乙醇之影響.,” 國立中央大學化學工程與材料工程研究所碩士論文, 2008.
[47] 彭鉦欽, “探討不同光強度對Penicillium brevicompactum在液態發酵中生產Mycophenolic acid之影響.,” 國立中央大學化學工程與材料工程研究所碩士論文, 2006.
[48] Tsuyoshi, M., et al., , “Light effect on cell development and secondary metabolism in Monascus.,” Journal of Industrial Microbiology and Biotechnology, 2005.
[49] Alfredo, H.E. and A.H. Benjamin, , “Looking through the eyes of fungi: molecular genetics of photoreception.,” Molecular Microbiology, pp. 5-15, 2007.
[50] 劉圈烯, et al., , “光敏色素研究進展.,” 中國農學通報, 2005.
[51] Briggs, W.R., “The LOV domain: a chromophore module servicing multiple photoreceptors.,” J. Biomed. Sci. 14, p. 499–504, 2007.
[52] Tang, Y.J. and J.J. Zhong, , “Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid.,” ENZYME.MICROB. TECH., p. 31, 2002.
[53] Ahamed, A., & Vermette, P., “Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions.,” Biochemical Engineering Journal, 40, pp. 399-407, 2008.
[54] Chung, T. W., Yang, J., Akaike, T., Cho, K. Y., Nah, J. W., Kim, S. I., et al. , “Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment.,” Biomaterials, 23, pp. 2827-2834, 2002.