| 研究生: |
李昌狄 LEE, CHANG-TI |
|---|---|
| 論文名稱: |
丹參素減緩骨骼肌細胞株C2C12因缺氧誘發之細胞凋亡及鐵依賴型細胞死亡之研究 Danshensu attenuated apoptosis and ferroptosis in hypoxia induced C2C12 skeletal muscle cell injury |
| 指導教授: | 蘇立仁 |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
生醫理工學院 - 跨領域轉譯醫學研究所 Institute of Translational and Interdisciplinary Medicine |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 丹參素 、骨骼肌損傷 、缺氧 、細胞凋亡 、鐵依賴型細胞死亡 |
| 外文關鍵詞: | Danshensu, Skeletal Muscle Injury, Hypoxia, Apoptosis, Ferroptosis |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現實生活中,肌肉損傷可能由不適當的運動所引發;而在本實驗裡,為了模擬肌肉損傷,我們透過缺氧的方式,對肌肉纖維母細胞 C2C12 造成氧化壓力;在缺氧的狀況下,活性氧化物(reactive oxygen species, ROS)與脂質活性氧化物(lipid ROS)的堆積會分別誘發細胞凋亡與鐵依賴型細胞死亡並最終導致細胞的死亡。既然氧化壓力是造成細胞損傷與死亡的重要機轉之一,如能在天然植物中找到具備減緩氧化壓力功效之成分,就可能用於減緩肌肉細胞的損傷,而在本研究中,我們選擇了丹參素作為實驗的對象。研究結果發現,丹參素能夠通過調控細胞凋亡的相關因子包含 BCL2、BAX 以及 cleaved-caspase 3(clCASP3),以及鐵依賴型細胞死亡的相關因子包含 GPX4 以及 SLC7A11,分別降低細胞凋亡及鐵依賴型細胞死亡的現象,並藉此保護骨骼肌細胞免於死亡。我們也同時觀察到丹參素的使用能降低活性氧化物與脂質活性氧化物的堆積。對於將丹參素用於骨骼肌細胞的氧化誘發損傷之替代療法,這些研究發現可以提供新的見解。
Exercise-induced muscle damage can be caused by eccentric exercise that is excessive or unaccustomed. For mimicking intracellular muscle injury, hypoxia induces oxidative stress on C2C12 myoblast cells. Under hypoxia, accumulation of ROS and lipid ROS caused cell death via apoptosis and ferroptosis, respectively. The identification of the candidate natural products involved in oxidative stress and the development of strategies to mitigate it have attracted considerable attention. In this study, we use Danshensu as a candidate product to speculate whether it has a protective effect on hypoxia-caused C2C12 cells damage via apoptosis and ferroptosis. Results showed that Danshensu alleviated the cell death and apoptosis via regulations of BCL2, BAX, and clCASP3, as well as ferroptosis via regulations of GPX4 and SLC7A11 upon hypoxia. Moreover, accumulations of ROS and lipid ROS caused by hypoxia were attenuated in presence of Danshensu. These findings may provide new insight into the possibility of Danshensu as an alternative treatment for hypoxia-induced damage to skeletal muscle C2C12 cell line.
〔1〕Clarkson, P.M. and M.J. Hubal,“Exercise-Induced Muscle Damage in Humans,” American Journal of Physical Medicine & Rehabilitation, Vol. 81(11), 2002, pp. S52-S69.
〔2〕Howatson, G. and K.A. Van Someren,“ The Prevention and Treatment of Exercise-Induced Muscle Damage,” Sports Medicine, Vol. 38, 2008, pp. 483-503.
〔3〕Bindu, S., S. Mazumder and U. Bandyopadhyay,“Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and Organ Damage: A Current Perspective,” Biochemical Pharmacology, Vol. 180, 2020, pp. 114147.
〔4〕Duchesne, E., S.S. Dufresne and N.A. Dumont,“Impact of Inflammation and Anti-Inflammatory Modalities on Skeletal Muscle Healing: From Fundamental Research to the Clinic,” Physical Therapy, Vol. 97(8), 2017, pp. 807-817.
〔5〕Sugimoto, M.A., et al.,“Resolution of Inflammation: What Controls Its Onset?” Frontiers in Immunology, Vol. 7, 2016, pp. 160.
〔6〕Chan, M.M. and A.R. Moore,“Resolution of Inflammation in Murine Autoimmune Arthritis is Disrupted by Cyclooxygenase-2 Inhibition and Restored by Prostaglandin E2-Mediated Lipoxin A4 Production,” Journal of Immunology, Vol. 184(11), 2010, pp. 6418-6426.
〔7〕董帥、王輝、謝治深:〈丹參功用本草考證及現代藥理認識〉,《遼寧中醫藥大學學報》,21(11),2019,152-155頁。
〔8〕國家藥典委員會:《中華人民共和國藥典:一部》,北京:中國醫藥科技出版社,2020,78-80頁。
〔9〕張廷模:《張廷模臨床中藥學講稿》,北京:人民衛生出版社,2010。
〔10〕世界中醫藥學會聯合會:《國際血瘀證診斷指南》,2021。
〔11〕International Society of Chinese Medicine,“International Diagnostic Guidelines for Blood-Stasis Syndrome,” Chinese Journal of Integrative Medicine, Vol. 28(4), 2022, pp. 297-303.
〔12〕佚名,(唐)王冰注,(宋)林億等校正:《重廣補注黃帝內經素問》,戰國至西漢時期(475 BCE to 9 CE),唐代補註,北宋奉敕校定本。
〔13〕(清)王清任:《醫林改錯》,1830。
〔14〕(清)唐宗海:《血證論》,1884。
〔15〕(清)吳謙等:《醫宗金鑑·正骨心法要旨》,1742。
〔16〕(清)唐宗海:《醫學見能》,1873。
〔17〕Ma, X.-J., et al.,“Modernization of Chinese Medicine Salviae Miltiorrhizae Radix et Rhizoma: A Review,” China Journal of Chinese Materia Medica, Vol. 47(19), 2022, pp. 5131-5139.
〔18〕Tsai, M.-K., Y.-L. Lin and Y.-T. Huang,“Effects of Salvianolic Acids on Oxidative Stress and Hepatic Fibrosis in Rats,” Toxicology and Applied Pharmacology, Vol. 242(2), 2010, pp. 155-164.
〔19〕Liu, Y.-W. and Y.-T. Huang,“Inhibitory Effect of Tanshinone IIA on Rat Hepatic Stellate Cells,” PLOS ONE, Vol. 9(7), 2014, e103229.
〔20〕Ye, Z., et al.,“Expanding the Therapeutic Potential of Salvia miltiorrhiza: A Review of Its Pharmacological Applications in Musculoskeletal Diseases,” Frontiers in Pharmacology, Vol. 14, 2023, 1276038.
〔21〕李占鷹等:〈丹參素藥理作用的研究進展〉,《華西藥學雜誌》,36(5),2021,600-603頁。
〔22〕Yang, S., et al.,“Protective Effects of Salvianic Acid A Against Multiple-Organ Ischemia-Reperfusion Injury: A Review,” Frontiers in Pharmacology, Vol. 14, 2023, 1297124.
〔23〕Lim, P., et al.,“Danshensu Sodium Salt Alleviates Muscle Atrophy via CaMKII‐PGC1α‐FoxO3a Signaling Pathway in D‐Galactose‐Induced Models,” The FASEB Journal, Vol. 39(2), 2025, e70280.
〔24〕Zhang, Y., et al.,“Sodium Danshensu Modulates Skeletal Muscle Fiber Type Formation and Metabolism by Inhibiting Pyruvate Kinase M1,” Frontiers in Pharmacology, Vol. 15, 2024, 1467620.
〔25〕Diokmetzidou, A., et al.,“Strategies to Study Desmin in Cardiac Muscle and Culture Systems,” Methods in Enzymology, Vol. 568, 2016, pp. 427-459.
〔26〕Ishiyama, M., et al.,“A Highly Water-Soluble Disulfonated Tetrazolium Salt as a Chromogenic Indicator for NADH as well as Cell Viability,” Talanta, Vol. 44(7), 1997, pp. 1299-1305.
〔27〕Drummen, G.P., et al.,“C11-BODIPY 581/591, an Oxidation-Sensitive Fluorescent Lipid Peroxidation Probe: (Micro) Spectroscopic Characterization and Validation of Methodology,” Free Radical Biology and Medicine, Vol. 33(4), 2002, pp. 473-490.
〔28〕Pircher, T., et al.,“Hypoxic Signaling in Skeletal Muscle Maintenance and Regeneration: A Systematic Review,” Frontiers in Physiology, Vol. 12, 2021, 684899.
〔29〕Kozakowska, M., et al.,“The Role of Oxidative Stress in Skeletal Muscle Injury and Regeneration: Focus on Antioxidant Enzymes,” Journal of Muscle Research and Cell Motility, Vol. 36, 2015, pp. 377-393.
〔30〕Tang, Y.Y., et al.,“Emerging Role of Hypoxia-Inducible Factor-1α in Inflammatory Autoimmune Diseases: A Comprehensive Review,” Frontiers in Immunology, Vol. 13, 2022, 1073971.
〔31〕Ola, M.S., M. Nawaz and H. Ahsan,“Role of Bcl-2 Family Proteins and Caspases in the Regulation of Apoptosis,” Molecular and Cellular Biochemistry, Vol. 351, 2011, pp. 41-58.
〔32〕Singh, R., A. Letai and K. Sarosiek,“Regulation of Apoptosis in Health and Disease: The Balancing Act of BCL-2 Family Proteins,” Nature Reviews Molecular Cell Biology, Vol. 20(3), 2019, pp. 175-193.
〔33〕Jiang, X., B.R. Stockwell and M. Conrad,“Ferroptosis: Mechanisms, Biology and Role in Disease,” Nature Reviews Molecular Cell Biology, Vol. 22(4), 2021, pp. 266-282.
〔34〕Florez, A.F. and H. Alborzinia (Eds.). Ferroptosis: Mechanism and Diseases. Vol. 1301, Springer Nature, 2021.
〔35〕Li, J., et al.,“Ferroptosis: Past, Present and Future,” Cell Death & Disease, Vol. 11(2), 2020, 88.
〔36〕Lv, J., et al.,“The Relationship Between Ferroptosis and Diseases,” Journal of Multidisciplinary Healthcare, 2022, pp. 2261-2275.
〔37〕Li, X., et al.,“NCOA4 is Regulated by HIF and Mediates Mobilization of Murine Hepatic Iron Stores After Blood Loss,” Blood, Vol. 136(23), 2020, pp. 2691-2702.
〔38〕Liu, M.-Z., et al.,“The Critical Role of Ferritinophagy in Human Disease,” Frontiers in Pharmacology, Vol. 13, 2022, pp. 933732.
〔39〕Fuhrmann, D.C., et al.,“Hypoxia Inhibits Ferritinophagy, Increases Mitochondrial Ferritin, and Protects from Ferroptosis,” Redox Biology, Vol. 36, 2020, 101670.
〔40〕Gao, X., et al.,“The Mechanisms of Ferroptosis Under Hypoxia,” Cellular and Molecular Neurobiology, Vol. 43(7), 2023, pp. 3329-3341.
〔41〕Hu, X., et al.,“Progress in Understanding Ferroptosis and Its Targeting for Therapeutic Benefits in Traumatic Brain and Spinal Cord Injuries,” Frontiers in Cell and Developmental Biology, Vol. 9, 2021, 705786.
〔42〕Hui, A., et al.,“Enhancement of Brain-Targeting Delivery of Danshensu in Rat Through Conjugation with Pyrazine Moiety to Form Danshensu-Pyrazine Ester,” Drug Delivery and Translational Research, Vol. 8, 2018, pp. 787-796.
〔43〕Xu, H., et al.,“Cytoprotective Effects Evaluation of a Novel Danshensu Derivative DEX-018 Against Oxidative Stress Injury in HUVECs,” Biological and Pharmaceutical Bulletin, Vol. 43(5), 2020, pp. 801-809.