| 研究生: |
宋灝霖 How-Lin Song |
|---|---|
| 論文名稱: |
甲烷氣體於MOF觸媒下氧化生成液態有機物之可行性研究 A Feasibility Study on the Oxidative Conversion of Methane into Liquid Organic Compounds Using MOF Catalysts |
| 指導教授: |
王柏翔
Po-Hsiang Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所在職專班 Executive Master of Environmental Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 金屬有機框架 、甲烷催化 、甲烷資源化 |
| 外文關鍵詞: | Metal–Organic Frameworks, Methane Catalysis, Methane Resource Utilization |
| 相關次數: | 點閱:85 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前全球氣候變遷議題已成為最嚴峻且迫切需要解決的環境問題,其中甲烷(CH₄)作為全球暖化潛勢(GWP)達二氧化碳(CO₂)25倍的第二大溫室氣體,其減排與資源化技術已被視為重要的短期策略目標。目前甲烷氣體處理方式大多偏向氣體回收後燃燒(如鍋爐燃料使用),雖可消除甲烷直接排放,但最終仍轉化為二氧化碳排放,未能根本解決碳循環問題。若能將甲烷有效轉化為具有經濟價值之有機化合物,將有助於實現永續碳循環與能源價值提升。
本研究採用金屬有機框架(Metal-Organic Framework, MOF)作為低溫水相氧化甲烷的觸媒平台,分別選用 Cu-Zr-MOF808 與 Cu-Ce-MOF808 進行反應性測試。實驗設計中於密閉厭氧瓶中注入7 mL純甲烷與1 mL超純水,加入5 mg MOF觸媒後於150°C條件下反應12小時,並使用GC-FID進行液相產物分析。
實驗結果顯示,Cu-Zr-MOF808 在反應後產生 31.8 ppm 的乙酸甲酯,而 Cu-Ce-MOF808 則檢測到 84.5 ppm 的乙酸,不添加純甲烷對照組則無產物生成。依據文獻理論與本實驗之分析,Cu-Zr-MOF808觸媒催化甲烷反應路徑推論為甲烷首先氧化生成甲醇,隨後氧化為乙酸,並在觸媒表面 Lewis 酸位點催化下進一步酯化生成乙酸甲酯。另外Cu-Ce-MOF808觸媒催化甲烷反應路徑推論為甲烷一步氧化生成乙酸,是藉由Ce³⁺/Ce⁴⁺氧化還原循環及孔道效應來催化反應。對於轉化率與選擇性計算,因分析儀器限制,僅推估甲烷反應消耗的濃度曲線下,所對應目標物的選擇性。
本研究驗證 MOF 觸媒在低溫、水相、微量氧氣條件下對甲烷具備選擇性氧化潛力,並呈現 Cu-Zr-MOF808與Cu-Ce-MOF808兩種MOF觸媒的不同反應路徑與催化特性。研究成果不僅提供甲烷轉化為液態含氧有機物的可行性依據,亦為未來甲烷減排與資源化利用技術開發提供理論支撐與實務參考。
Global climate change has become one of the most critical and pressing environmental issues in the world today. Methane (CH₄), as the second most significant greenhouse gas (GHG) with a global warming potential (GWP) approximately 25 times greater than that of carbon dioxide (CO₂), has attracted increasing attention. The development of reduction and valorization technologies for methane is regarded as a key short-term strategy. Currently, most methane mitigation approaches focus on combustion for energy recovery (e.g., as boiler fuel). While such methods eliminate direct methane emissions, they ultimately result in CO₂ emissions, failing to address the core issue of carbon circularity. Converting methane into value-added oxygenated organic compounds offers a promising pathway toward sustainable carbon recycling and enhanced energy utilization.
This study employed Metal–Organic Frameworks (MOF) as catalytic platforms for the aqueous-phase oxidation of methane under low-temperature conditions. Cu-Zr-MOF808 and Cu-Ce-MOF808 were selected as catalysts for activity evaluation. The experimental setup involved injecting 7 mL of pure methane and 1 mL of ultrapure water into a sealed anaerobic vial, followed by the addition of 5 mg of MOF catalyst. The reaction was conducted at 150 °C for 12 hours, and the liquid-phase products were analyzed using gas chromatography with a flame ionization detector (GC-FID).
The results revealed that Cu-Zr-MOF808 produced 31.8 ppm of methyl acetate, while Cu-Ce-MOF808 yielded 84.5 ppm of acetic acid. No products were detected in the control group without methane, indicating that methane is the critical reactant. Based on literature and experimental analysis, the proposed reaction pathway for Cu-Zr-MOF808 involves sequential oxidation of methane to methanol and then to acetic acid, followed by esterification on Lewis acid sites of the MOF surface to form methyl acetate. For Cu-Ce-MOF808, the reaction pathway is proposed as one-step oxidation of methane to acetic acid, facilitated by Ce³⁺/Ce⁴⁺ redox cycling and pore confinement effects. Due to limitations in instrumental capabilities, the conversion and selectivity were estimated based on simulated methane consumption scenarios.
This study confirms the potential of MOF catalysts to selectively oxidize methane under low-temperature, aqueous-phase, and oxygen-limited conditions. The distinct catalytic behaviors and mechanistic pathways of Cu-Zr-MOF808 and Cu-Ce-MOF808 are elucidated, offering feasible routes for converting methane into oxygenated liquid chemicals. These findings provide both theoretical insight and practical references for the future development of methane abatement and resource utilization technologies.
UN General Assembly (2015). Transforming our world : the 2030 Agenda for Sustainable Development.
European Commission (2020). EU Strategy to Reduce Methane Emissions.
Intergovernmental Panel on Climate, Change (2021). Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press.
U.S. Department of State (2021). Global Methane Pledge: A Strategy for Rapid Climate Action.
United Nations Environment Programme (2023). Executive summary. In Emissions Gap Report 2023: Broken Record – Temperatures hit new highs, yet world fails to cut emissions (again). Nairobi.
Baek, Jayeon, Bunyarat Rungtaweevoranit, Xiaokun Pei, Myeongkee Park, Sirine C. Fakra, Yi-Sheng Liu, Roc Matheu, Sultan A. Alshmimri, Saeed Alshehri, Christopher A. Trickett, Gabor A. Somorjai and Omar M. Yaghi,(2018). "Bioinspired Metal–Organic Framework Catalysts for Selective Methane Oxidation to Methanol." Journal of the American Chemical Society 140(51): 18208-18216.
Bhati, Meema, Jignesh Dhumal and Kavita Joshi,(2022). "Lowering the C–H bond activation barrier of methane by means of SAC@Cu(111): periodic DFT investigations." New Journal of Chemistry 46(1): 70-74.
Carrasco, Sergio,(2018). "Metal-Organic Frameworks for the Development of Biosensors: A Current Overview." Biosensors 8(4): 92.
EIA,(2021). International Energy Outlook.
Freakley, Simon J., Nikolaos Dimitratos, David J. Willock, Stuart H. Taylor, Christopher J. Kiely and Graham J. Hutchings,(2021). "Methane Oxidation to Methanol in Water." Accounts of Chemical Research 54(11): 2614-2623.
Furukawa, Hiroyasu, Kyle E. Cordova, Michael O’Keeffe and Omar M. Yaghi,(2013). "The Chemistry and Applications of Metal-Organic Frameworks." Science 341(6149): 1230444.
Grundner, Sebastian, Monica A. C. Markovits, Guanna Li, Moniek Tromp, Evgeny A. Pidko, Emiel J. M. Hensen, Andreas Jentys, Maricruz Sanchez-Sanchez and Johannes A. Lercher,(2015). "Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol." Nature Communications 6(1): 7546.
Gujer, W. and Zehnder, A.J.,(1983). Conversion Processes in Anaerobic Digestion. Water Science and Technology: 127-167.
Gupta, Poorvi, Bharti Rana, Rishabh Maurya, Rahul Kalita, Manav Chauhan and Kuntal Manna,(2025). "Copper catalyzed selective methane oxidation to acetic acid using O2." Chemical Science 16(6): 2785-2795.
Hall, J. N. and P. Bollini,(2020). "Low-Temperature, Ambient Pressure Oxidation of Methane to Methanol Over Every Tri-Iron Node in a Metal-Organic Framework Material." Chemistry 26(70): 16639-16643.
Huang, Haigen, Kui Shen, Fengfeng Chen and Yingwei Li,(2020). "Metal–Organic Frameworks as a Good Platform for the Fabrication of Single-Atom Catalysts." ACS Catalysis 10(12): 6579-6586.
Huang, Min, Shuyi Zhang, Bo Wu, Yao Wei, Xing Yu, Yongping Gan, Tiejun Lin, Fei Yu, Fanfei Sun, Zheng Jiang and Liangshu Zhong,(2022). "Selective Photocatalytic Oxidation of Methane to Oxygenates over Cu–W–TiO2 with Significant Carrier Traps." ACS Catalysis 12(15): 9515-9525.
Jiao, L., Y. Wang, H. L. Jiang and Q. Xu,(2018). "Metal-Organic Frameworks as Platforms for Catalytic Applications." Adv Mater 30(37): e1703663.
Kitagawa, S., R. Kitaura and S. Noro,(2004). "Functional porous coordination polymers." Angew Chem Int Ed Engl 43(18): 2334-2375.
Li, Lucheng, Lu Xu, Ting Xiao, Zanji He and Qijin Chen,(2025). "Mitigation of methane emissions from urban sewer sediments: Sulfate addition and freeze-drying treatment." Process Safety and Environmental Protection 198: 107104.
Myhre, G; Shindell, D; Bréon, FM; Collins, W; Fuglestvedt, J; Huang, J; Koch, D; Lamarque, JF; Lee, D; Mendoza, B; Nakajima, T; Robock, A; Stephens, G; Takemura, T; Zhang, H,(2013). Anthropogenic and natural radiative forcing, Cambridge University Press
Olivier, J. G. J., & Peters, J. A. H. W.,(2020). Trends in Global CO₂ and Total Greenhouse Gas Emissions: 2020 Report, PBL Netherlands Environmental Assessment Agency.
Periana, Roy A., Douglas J. Taube, Scott Gamble, Henry Taube, Takashi Satoh and Hiroshi Fujii,(1998). "Platinum Catalysts for the High-Yield Oxidation of Methane to a Methanol Derivative." Science 280(5363): 560-564.
Qin, Yuan, Huimei Liang, Jia Wu, Zheyang Chi, Shulin Zhao and Fanggui Ye,(2025). "Self-Cascade of the Cu/Ce-MOF-808 Nanozyme for One-Step Colorimetric Sensing." Analytical Chemistry 97(15): 8468-8475.
Rodrigues, M. A. S., Almeida, C. M. V. B., & da Silva, M. G. C.,(2020). "Mitigation of methane emissions in wastewater treatment plants: Review and research needs." Journal of Environmental Management, 273.
Rojas-Buzo, S., P. Concepción, J. L. Olloqui-Sariego, M. Moliner and A. Corma,(2021). "Metalloenzyme-Inspired Ce-MOF Catalyst for Oxidative Halogenation Reactions." ACS Appl Mater Interfaces 13(26): 31021-31030.
Rojas-Buzo, S., D. Salusso, T. T. Le, M. A. Ortuño, K. A. Lomachenko and S. Bordiga,(2024). "Unveiling the Role and Stabilization Mechanism of Cu(+) into Defective Ce-MOF Clusters during CO Oxidation." J Phys Chem Lett 15(14): 3962-3967.
Saunois, M., A. R. Stavert, B. Poulter, P. Bousquet, J. G. Canadell, R. B. Jackson, P. A. Raymond, E. J. Dlugokencky, S. Houweling, P. K. Patra, P. Ciais, V. K. Arora, D. Bastviken, P. Bergamaschi, D. R. Blake, G. Brailsford, L. Bruhwiler, K. M. Carlson, M. Carrol, S. Castaldi, N. Chandra, C. Crevoisier, P. M. Crill, K. Covey, C. L. Curry, G. Etiope, C. Frankenberg, N. Gedney, M. I. Hegglin, L. Höglund-Isaksson, G. Hugelius, M. Ishizawa, A. Ito, G. Janssens-Maenhout, K. M. Jensen, F. Joos, T. Kleinen, P. B. Krummel, R. L. Langenfelds, G. G. Laruelle, L. Liu, T. Machida, S. Maksyutov, K. C. McDonald, J. McNorton, P. A. Miller, J. R. Melton, I. Morino, J. Müller, F. Murguia-Flores, V. Naik, Y. Niwa, S. Noce, S. O'Doherty, R. J. Parker, C. Peng, S. Peng, G. P. Peters, C. Prigent, R. Prinn, M. Ramonet, P. Regnier, W. J. Riley, J. A. Rosentreter, A. Segers, I. J. Simpson, H. Shi, S. J. Smith, L. P. Steele, B. F. Thornton, H. Tian, Y. Tohjima, F. N. Tubiello, A. Tsuruta, N. Viovy, A. Voulgarakis, T. S. Weber, M. van Weele, G. R. van der Werf, R. F. Weiss, D. Worthy, D. Wunch, Y. Yin, Y. Yoshida, W. Zhang, Z. Zhang, Y. Zhao, B. Zheng, Q. Zhu, Q. Zhu and Q. Zhuang,(2020). "The Global Methane Budget 2000–2017." Earth Syst. Sci. Data 12(3): 1561-1623.
Sirajuddin, Sarah and Amy C. Rosenzweig,(2015). "Enzymatic Oxidation of Methane." Biochemistry 54(14): 2283-2294.
Yaghi, Omar M., Guangming Li and Hailian Li,(1995). "Selective binding and removal of guests in a microporous metal–organic framework." Nature 378: 703-706.
Yan, Linghui, Liangliang Jiang, Chao Qian and Shaodong Zhou,(2024). "Electrocatalytic conversion of methane: Recent progress and future prospects." Energy Reviews 3(2): 100065.
You, Jiakang, Yifan Bao, Yanzhao Zhang, Muxina Konarova, Zhiliang Wang and Lianzhou Wang,(2024). "Green energy driven methane conversion under mild conditions." EES Catalysis 2(6): 1210-1227.
Zheng, J., J. Ye, M. A. Ortuño, J. L. Fulton, O. Y. Gutiérrez, D. M. Camaioni, R. K. Motkuri, Z. Li, T. E. Webber, B. L. Mehdi, N. D. Browning, R. L. Penn, O. K. Farha, J. T. Hupp, D. G. Truhlar, C. J. Cramer and J. A. Lercher,(2019). "Selective Methane Oxidation to Methanol on Cu-Oxo Dimers Stabilized by Zirconia Nodes of an NU-1000 Metal-Organic Framework." J Am Chem Soc 141(23): 9292-9304.