| 研究生: |
謝岳衡 Yueh-Heng Hsieh |
|---|---|
| 論文名稱: |
鈦合金電子束銲件之疲勞裂縫成長壽命評估及破壞韌 性研究 |
| 指導教授: |
黃俊仁
Jiun-Ren Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 鈦合金 、電子束銲接 、疲勞裂縫成長 、應力比 、變動振幅負載 、破壞韌性 |
| 外文關鍵詞: | Ti-6Al-4V, Electron Beam Welding, Fatigue Crack Growth, Stress Ratio, Variable Amplitude Loading, Fracture Toughness |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以Ti-6Al-4V鈦合金為實驗材料,採用自體銲接方式進行電子束銲接(EBW),檢視鈦合金銲件之銲道與母材在等負荷振幅及變動負荷振幅負載下之疲勞裂縫成長性質,利用破壞力學評估在變動負荷振幅負載下之疲勞壽命。再研究不同應力比下對於銲件疲勞裂縫成長的影響,最後探討此材料銲道與母材的破壞韌性。
研究結果顯示,銲道抵抗疲勞裂縫成長能力較母材佳,且在疲勞裂縫成長實驗中,可觀察到銲道在受到不同應力比時,其產生的影響較小。若在相同的變動振幅負載條件下,銲道壽命為母材的4倍。母材的破壞韌性JIC為66 N-mm/mm2,銲道為30 N-mm/mm2。綜觀本實驗所使用之各種修正模式下,靜態破壞修正模式對於預測疲勞裂縫成長壽命最為準確。
In this study, we chose Ti-6Al-4V titanium alloy processed by the implemented Electron Beam Welding (EBW) for the experiment. The objectives were as follows. (1) To obtain the materials properties such as fatigue crack growth rate and fracture toughness. (2) To understand the effects of stress ratio on the fatigue crack growth rate. (3) To establish the optimum method for predicting fatigue life of a cracked specimen.
The results showed that the anti-crack growth ability of weld bead was better than the base material. The fatigue crack growth rate of welding bead was less affected by the stress ratio. Under the same variable amplitude loading, the fatigue life of weld bead was about four times of base material. Fracture toughness JIC of base material and welding bead was 66 N-mm/mm2 and 30 N-mm/mm2, respectively. With respect to fatigue crack growth life prediction, the static fracture correction model was the most accurate one.
參考文獻
[1] 曾婉如,“鈦金屬市場現況與應用商機“,中工高雄會刊,第21卷,第1期。
[2] 洪祖昌,”從電子束焊接談技術引進與研究發展”,機械工業,66-71頁,1985。
[3] 高道鋼,“鈦銲接技術”,全華科技圖書出版,2-15頁,2001。
[4] G. LaFlamme, J. Knoefel, “Application of electron beam welding,” International Conference on Power Beam Technology, Brighton, 10-12 September, Abington, Cambridge, 1986, pp. 59-74.
[5] 洪胤庭,“純鈦及鈦合金特性及製程介紹”,中工高雄會刊,第21卷,第1期,16-18頁。
[6] 朱建平、陳瑾惠、簡嘉毅,鈦-鉬合金熱處理後拉伸疲勞性質研究,碩士論文,國立成功大學材料科學及工程學系所,2005。
[7] 陸美源,“ Ti-6Al-4V與Ti-15V-3Cr-3Al-3Sn 銲件之高溫缺口拉伸性質研究”,碩士論文,國立台灣海洋大學,2011。
[8] 賴耿陽,“金屬鈦(理論與應用) ”,台南:復漢出版社,50-56頁,2000。
[9] K. P. Rao, ”Fracture toughness of electron beam welded Ti-6Al-4V,” Journal of Materials Processing Technology, Vol. 199, No. 1, pp. 185-192, 2008.
[10] K. K. Murthy, ”Fracture toughness of Ti-6Al-4V after welding and post weld heat treatment ” Welding Journal, Vol. 76, No. 2, p 81s-91s, 1997.
[11] J. L. Barreda, ”Influence of the filler metal on the mechanical properties of Ti-6Al-4V electron beam weldments,” Vacuum, Vol. 85, No. 1, pp. 10-15, 2010.
[12] 林邵品,銲接製程對308L沃斯田不鏽鋼和道疲勞裂縫成長行為之影響,碩士論文,國立清華大學,2011。
[13] 陳香如,銲接製程對309L沃斯田鐵系不鏽鋼銲道之疲勞裂縫成長影響,碩士論文,國立清華大學,2012。
[14] 丁逸勳,”Ti-6Al-4V、SP700銲件機械性質特性”,碩士論文,台灣海洋大學材料工程所,2006。
[15] 丁逸勳,”環境效應對雙相 α + β 鈦合金雷射銲件之疲勞裂縫成長行為”,博士論文,台灣海洋大學材料工程所,2011。
[16] 張世宗,”Ti-15V-3Cr-3Sn-3Al缺口拉伸性質及疲勞裂縫成長行為”,碩士論文,台灣海洋大學材料工程所,2012。
[17] H. U. Qi, ”Fatigue crack growth of titanium alloy joints by electron beam welding,” Rare Metals, pp. 1-6, 2013.
[18] L. B. Ji, ”Morphologies at fatigue crack tip of Ti-6Al-4V electron beam welding joints,” Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, Vol. 21, No. 1, pp. 102-109, 2011.
[19] T. S. Balasubramanian, ”Fatigue performance of gas tungsten arc, electron beam, and laser beam welded Ti-6Al-4V alloy joints,” Journal of Materials Engineering and Performance, Vol. 20, No. 9, pp. 1620-1630, 2011.
[20] R. Cortez, ”Investigation of variable amplitude loading on fretting fatigue behavior of Ti-6Al-4V,” International Journal of Fatigue, Vol. 21, No. 7, pp. 709-717, 1999.
[21] O. Jin, “Investigation into cumulative damage rules to predict fretting fatigue life of Ti-6Al-4V under two-level block loading condition.” Journal of Engineering Materials and Technology, Transactions of the ASME, Vol. 123, No. 3, pp.315-323, 2003.
[22] Y. Uematsu, “Fatigue crack growth behavior of Ti-6Al-4V alloy with bimodal microstructure under constant and non-stationary variable amplitude load sequence.” Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, Vol. 71, No.8, pp.1160-1166, 2005.
[23] A. A. Griffith, “The Phenomena of Rupture and Flow in Solids.” Phil. Trans. Roy. Soc. Of London, A221, pp.163-197.
[24] G. R. Irwin, "Fracture Dynamics Fracturing of Metals." American Society for Metals, Cleveland, OH, 1949, pp.147-166.
[25] G. R. Irwin, "Analysis of Stresses and Strains Near The End of a Crack Traversing a Plate." Journal of Applied Mechanics, Trans. Of ASME, Vol. E24, 1957, pp.361-364
[26] J. A. Bannantine, J. J. Comer, J. L. Handerck, "Fundamentals of Metal Fatigue Analysis." Prentice Hall Englewood Cliffts, p90.
[27] E. Zahavi, “FATIGUE DESIGN : Life Expectancy of Machine Parts,”CRC Press. 1996.
[28] J. A. Bannantine, J. J. Comer, J. L. Handerck, "Fundamentals of Metal Fatigue Analysis." Prentice Hall Englewood Cliffts, p91.
[29] 岡村弘之,”線彈性破壞力學基礎”,五南圖書出版,180頁,2009。
[30] “Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials”, Annual Book of ASTM Standards, E 399-90.
[31] P. C. Paris and F. Erdogan, “A critical analysis of crack propagation law,” Journal of Basic Engineering, Vol. D85, pp. 528-534, 1963.
[32] J. A. Bannantine, J. J. Comer, J. L. Handerck, "Fundamentals of Metal Fatigue Analysis." Prentice Hall Englewood Cliffts, p105.
[33] W. Elber, “Fatigue Crack Closure under Cyclic Tension”, Engineering Fracture Mechanics, Vol. 2, No. 1, 1970, pp. 37-45.
[34] W. Elber, “The Significance of Fatigue Crack Closure”, Damage Tolerance in Aircraft Structures, ASTM STP 486, 1971, pp. 230-242.
[35] S. Suresh, Fatigue of Materials, Cambridge University Press, 1991, pp. 222-271.
[36] G.P. Cherepanov, “Crack propagation in continuous media”,PMM vol. 31, no. 3, 1967, pp. 476–488.
[37] J. R. Rice, “A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks”, Journal of Applied Mechanics, Vol. 35, 1968, pp. 379-386.
[38] “Standard Test Method for Measurement of Fatigue Crack Growth Rates”, ASTM E647-11.
[39] “Standard Test Method for Measurement of Fracture Toughness”, ASTM E1820-11.
[40] “Standard Test Method for Measurement of Fracture Toughness”, ASTM E1820-11, p30.
[41] “Standard Test Methods for Tension Testing of Metallic Materials,” ASTM E8, American Society for Testing and Materials, United States of America, 2012.
[42] M. Matsuishi and T. Endo, "Fatigue of Metals Subjected to Varying Stress." Japan Society of Mechanical Engineers, Japan, 1968.
[43] "Section 3: Metals Test Methods and Analytical Procedure, Vol. 03.01, Metals-Mechanical Testing: Elevated and Low-Temperature Tests." American Society for Testing and Materials, United States of America, 1986.
[44] J. A. Bannantine, J. J. Comer, J. L. Handerck, "Fundamentals of Metal Fatigue Analysis." Prentice Hall Englewood Cliffts, p107.
[45] J. A. Bannantine, J. J. Comer, J. L. Handerck, "Fundamentals of Metal Fatigue Analysis." Prentice Hall Englewood Cliffts, p202.
[46] J. A. Bannantine, J. J. Comer, J. L. Handerck, "Fundamentals of Metal Fatigue Analysis." Prentice Hall Englewood Cliffts, p1123.
[47] “Standard Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate.” ASTM B265, American Society for Testing and Materials, United States of America, 2015.
[48] 羅志明,”Ti-6Al-4V鈦合金電子束銲件之疲勞裂縫成長研究”,碩士論文,國立中央大學,2018。
[49] Jaap Schijve, "Fatigue of structures and materials.", Springer, pp.229.
[50] Pierre Marmy, "The effect of hydrogen on the fracture toughness of the titanium alloys Ti6Al4V and Ti5Al2.5Sn before and after neutron irradiation.", Association Euratom- Confédération Suisse Ecole Polytechnique fédérale de Lausanne 5232 Villigen , PSI, Switzerland.
[51] ASM Handbook, "Fatigue and fracture volume19."