跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳思涵
Ssu-Han Chen
論文名稱: 應用於生醫偵測之類比前端 可調增益放大器設計
Designs of Analog Front-End Amplifier with Programmable Gain for Bio-sensor
指導教授: 薛木添
Muh-Tian Shiue
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 118
中文關鍵詞: 類比前端低雜訊放大器電流重複使用
外文關鍵詞: analog front-end low-noise amplifier, current reusing
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於人們越來越注重身體的健康,各種穿戴式生醫電子醫療儀器如雨後春筍般崛起,透過生醫電子醫療儀器的量測生理訊號,依數值來確保生理上的健康。現今增加儀器的可靠度與降低本身的功耗、體積以及成本,均是當今技術的發展趨勢。故本論文將以如何降低功耗與低雜訊為訴求,來達到目的。本論文由兩部分所組成:
    第一部分為設計一個應用於生醫訊號之低雜訊低功耗的放大器,使用部分電流輸入對,減小元件使用面積,後面接上可調整增益放大器,以利於使用於不同生理訊號。
    第二部分為設計一個應於生醫訊號之低雜訊低功耗的放大器,導入電流重複使用技術(Current-Reusing),可以抑制其閃爍雜訊、熱雜訊以及功率消耗,後面接上可調整增益放大器,以使用於不同生理訊號。
    本論文的電路設計均使用UMC 0.18 μm CMOS 1P6M製程。為了追求低功耗,因此將所有電路的供應電壓設定為1.2 V。第一部份的類比前端放大器在輸入訊號頻率100 Hz、輸入震幅100 μV下,放大器倍率可從42 dB到69 dB均可有效放大。輸入參考雜訊為4.1065 μVrms,其晶片面積占0.82mm*0.95mm,整體晶片功耗為11.67 μW。第二部份的類比前端放大器在輸入訊號頻率100 Hz、輸入震幅100 μV下,放大器倍率可從45 dB到55 dB均可有效放大。輸入參考雜訊為1.981 μVrms,其晶片面積占0.72mm*0.95mm,整體晶片功耗為6.58 μW。


    People pay attention to the health of the body more and more, various bio-medical wearable devices have been launched to measure the physiological signals through the medical electronic equipment for ensuring the health of physical. Recent years, by improving the multi-purpose biomedical instruments, reliability, power consumption, equipment size and cost are essential to today's circuit design. Particularly, how to reduce the power consumption and low noise is important to achieve the portability.
    This thesis consists of two parts, the first part designs a low noise amplifier for bio-medical application using partial current input pair, and it can reduce the size of elements, and it followed by programmable gain amplifier to be used for different physiological signals. In the second part, designs a low noise amplifier for bio-medical application using current-reusing technique that is used to maintain flicker noise and thermal noise to lower level and to keep low power consumption. And it followed by programmable gain amplifier to be used for different physiological signals.
    Designs in this thesis are fabricated in the UMC 0.18 μm 1P6M CMOS process. In order to pursue low-power consumption, the supply voltage is all set up as low as 1.2 V. The first circuit is an LNA. When the input signal is 100 μV input amplitude with 100 Hz, the mid-band gain of analog front-end low-noise amplifier can be programmed from 42 dB to 69 dB. The post layout simulation shows that the input-referred noise is 4.1065 μVrms, the chip area is 0.82mm*0.95mm, and the overall chip consumes 11.67 μW. The second circuit is also an LNA. When input signal is 100 μV input amplitude with 100 Hz, the mid-band gain of analog front-end low-noise amplifier can be programmed from 45 dB to 55 dB. The post layout simulation shows that the input-referred noise is 1.981 μVrms, the chip area is 0.72mm*0.95mm, and the overall chip consumes 6.58 μW.

    摘要 i Abstract ii 致謝 iv 目錄 v 圖目錄 x 第一章 緒論 1 1.1 背景 1 1.2 研究動機 1 1.3 論文架構 3 第二章 生醫放大器的需求考量 4 2.1 生理訊號類別 4 2.2 非理想效應 5 2.2.1 低頻雜訊特性 5 2.2.1.1 熱雜訊(Thermal noise) 6 2.2.1.2 閃爍雜訊 (Flicker noise) 8 2.2.2 直流偏壓特性(DC offset) 11 2.2.3 共模拒斥比(CMRR) 12 2.2.3.1 差模組態 12 2.2.3.2 共模組態 13 2.2.3.3 共模拒斥比 15 2.3 前端放大器設計 15 2.3.1 電路架構選擇 16 2.3.1.1 傳統儀表放大器(Instrument amplifier,IA) 16 2.3.1.2 交流耦合放大器(AC coupled amplifier) 18 2.3.1.3 生醫放大器電路架構 19 2.3.2 使用弱反轉區特性 21 2.3.3 電路架構的雜訊分析 23 第三章 可調增益低雜訊放大器設計 25 3.1 電路架構 25 3.2 第一版放大器的設計 26 3.2.1 生醫放大器的電路規格 26 3.2.2 放大器的增益分配 28 3.2.2.1 第一級放大器 28 3.2.2.2 第二級放大器 29 3.2.3 轉導放大器電路 29 3.2.4 雜訊分析 32 3.2.5 共模回授電路 34 3.2.6 虛擬電阻 35 3.2.7 電路模擬結果 36 3.2.7.1 差動增益 36 3.2.7.2 共模增益 37 3.2.7.3 雜訊響應 38 3.2.7.4 Transient response 41 3.2.7.5 VDD變異Transient response 50 3.3 第二版放大器的設計 58 3.3.1 生醫放大器的電路規格 58 3.3.2 放大器的增益分配 59 3.3.2.1 第一級放大器 60 3.3.2.2 第二級放大器 60 3.3.3 使用電流重複利用技術電路 60 3.3.3.1 電流重複利用技術 60 3.3.3.2 放大器第一級的自偏壓回授電路 63 3.3.4 米勒電容補償(Miller compensation) 64 3.3.4.1 零電阻補償(nulling resistor compensation) 65 3.3.5 放大器的電路架構 67 3.3.6 雜訊分析 69 3.3.7 電路模擬結果 71 3.3.7.1 差動增益 71 3.3.7.2 共模增益 72 3.3.7.3 雜訊響應 73 3.3.7.4 Transient response 75 3.3.7.5 VDD變異Transient response 82 第四章 晶片佈局與量測 87 4.1 量測考量 87 4.1.1 微小電流量測 88 4.1.2 AC response 88 4.1.3 量測步驟 88 4.2 晶片佈局 90 4.2.1 第一版前端放大器 90 4.2.2 第二版前端放大器 91 第五章 總結與未來展望 92 5.1 總結 92 5.2 未來展望 92 參考文獻 93

    [1] J. G. Webster, “Medical Instrumentation Application and Design,” Canada: John
    Wiley & Sons., 1998.
    [2] D. A. Johns and K. Martin, “Analog CMOS integrated Circuit Design”, John Wiley & Sons, Inc., 1997.
    [3] B. Razavi, “Design of analog CMOS integrated circuits,” New York: McGraw-Hill, 2001.
    [4] HORNG-SEN FU, CHIH-TANG SAH, “Theory and experiments on surface 1/f noise,” IEEE Trans. Electron Devices, vol. ed-19n, pp. 273. February, 1972.
    [5] A. S. Sedra and K. C. Smith,“ Microelectronic circuit,” 5th ed. New York: Oxford, Aug.2007.
    [6] J. G. Webster, Medical Instrumentation: Application and Design, 4rd edition., New York: John Wiley & Sons, 1998.
    [7] F. J. Lidgey and C. Toumazou, “Novel current-mode instrumentation amplifier,” Electronics Letters, vol. 25, pp. 228-230, Oct. 1989.
    [8] R. R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural recording applications,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 958–65, Jun. 2003.
    [9] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, “Analysis and design of analog integrated circuits,” New York: John Wiley & Sons, Inc., 2001.
    [10] R. R. Harrison, “MOSFET Operation in weak and moderate inversion” University of Utah.
    [11] 陳雅雯 , “應用於生理訊號偵測之可調式增益與頻寬讀取電路”, 國立中央大學電機工程學系碩士論文, 民國105年
    [12] M.-T. Shiue, K.-W Yao, and C.-S.A. Gong,“ Tunable high resistance voltage-controlled pseudo-resistor with wide input voltage swing capability,” Electron. Lett., vol. 47,no. 6, pp. 377-378, Mar. 2011.
    [13] Ji-Yong Um, Jae-Yoon Sin, and Hong-June Park, “A Gate-leakage Insensitive 0.7-V 233-nW ECG Amplifier using Non-Feedback PMOS Pseudo-Resistors in 0.13-µm N-well CMOS,” Journal of Semiconductor Technology and Science, vol. 10, no. 4 pp. 309–315, Dec. 2010.
    [14] Harrison, www.ece.utah.edu/ harrison/ece5720/subthreshold.pdf,
    [15] 凃建宇 , “應用於偵測生醫訊號的可調增益低雜訊放大器暨逐漸趨近式類比數位轉換器之低耗能類比前端設計”, 國立中央大學電機工程學系碩士論文, 民國105年.
    [16] Hamidreza Rezaee-Dehsorkh, “Analysis and Design of Tunable Amplifiers for Implantable Neural Recording Applications,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 1, no. 4, pp. 546–556 Dec. 2011.
    [17] Allen, “CMOS Analog Circuit Design” 3nd, 2011.
    [18] B. Gosselin, M. Sawan, C. A. Chapman, “A low-power integrated bioamplifier with active low-frequency suppression,” IEEE Trans. Biomed., vol. 1, no. 3, pp. 184–192, Jun. 2007.
    [19] J. Yoo et al., “An 8-channel scalable EEG acquisition SoC with patientspecific seizure classification and recording processor,” IEEE J. SolidState Circuits, vol. 48, no. 1, pp. 214–228, Jan. 2013.

    QR CODE
    :::