跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃昭銘
Zhuan-Ming Huang
論文名稱: 消去GPS相位模稜OTF相對定位之研究
指導教授: 吳究
Joz Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 77
中文關鍵詞: 相位餘弦模式收斂空間位置層次式On-The-Fly寬巷
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 使用二次差分電碼定位來建立並平滑一條初始時變趨勢軌跡,並且利用長波長寬巷線性組合聯解,由粗至細(由長至短)層次式逼近,來幫助幾何位置之收斂,在處理過程中並且考慮所有二次差分之電離層延遲量。最後以獨立不相關之載波觀測量L1、L2進行相位餘弦聯解之最小二乘估計,並且利用統計檢定來檢定其殘差二次型是否合理。本研究利用一個低動態實驗來探討此層次式位置收斂概念於相位餘弦模式之OTF相對定位的可行性。



    Differential GPS-based position solutions are smoothed to create an initial time-varying trend trajectory. Long-wavelength wide-lane phase combinations are utilized to facilitate positional convergence, on a stage-by-stage basis. Although as by-products, all the double-difference ionospheric path delays will be obtained, when, finally, the respective cosines of the L1 and L2 carrier phases undergo a simultaneous least-squares estimation. In particular, the quadratic forms of the estimated phase residuals are linked with statistical testing to allow for a meaningful inference. Some low-dynamics experiments prove the feasibility of the hierarchical positioning concept.

    中文摘要.........................................I 英文摘要........................................II 圖目錄.........................................III 表目錄..........................................IV 第一章 緒論.....................................1 1.1 文獻回顧....................................1 1.2 研究動機....................................3 1.3 論文架構....................................4 第二章 GPS衛星測量基本理論......................5 2.1 電碼與載波相位資料..........................5 2.2 觀測方程式..................................6 2.2.1 虛擬距離觀測方程式.........................6 2.2.2 載波相位觀測方程式.........................9 2.3 差分模式...................................11 2.3.1 一次差分..................................12 2.3.2 二次差分..................................14 第三章 載波相位餘弦函數模式....................16 3.1 相位餘弦模式...............................16 3.2 餘弦與正弦模式之全等性.....................17 3.3 雙頻觀測量之應用模式.......................19 3.3.1 雙頻觀測量之線性組合模式..................19 3.3.2 載波相位觀測間之聯解模式..................21 3.4 最小二乘法.................................22 第四章 統計檢定與求解步驟......................24 4.1 統計檢定...................................24 4.1.1 卡方(Chi-Square)統計檢定..................24 4.1.2 費雪(Fisher)統計檢定......................26 4.2 迭代資料搜評...............................26 4.3 判別檢定...................................28 4.3.1 判別檢定之方法............................28 4.5 求解步驟...................................31 4.5.1 電碼階段軌跡平滑..........................33 4.5.2 超、特寬巷階段............................34 4.5.3 中寬巷、寬巷之聯解........................37 4.5.4 獨立相位L1、L2之聯解......................39 第五章 實驗成果與分析..........................40 5.1 資料處理設備...............................40 5.2 層次式收斂分析.............................41 5.3 靜態資料處理...............................48 5.3.1 實驗例子之基線及相關資料..................48 5.3.2 靜態資料處理分析..........................49 5.4 動態實驗成果與分析.........................60 第六章 結論與建議..............................64 6.1 結論.......................................64 6.2 建議.......................................65 參考文獻........................................67 附錄A 載波相位二次差分線性組合之餘弦函數模式...71 附錄 B 正交變換................................76

    內政部,「應用全球定位系統實施台閩地區基本控制點測量計畫」總報告,台北(1998)。
    吳究、游豐吉,「雙頻GPS相位餘弦模式之空間收斂性」,中國土木水利工程學刊,第十二卷,第二期,第371-379頁(2000)。
    林孜彥,「衛星測量雙頻相位一次差取餘弦函數聯解之研究」,碩士論文,國立中央大學太空科學研究所,中壢(1997)。
    游豐吉,「應用GPS載波相位餘弦模式於衛星測量之研究」,博士論文,國立中央大學土木工程研究所,中壢(1999)。
    Bassiri, S., and G. A. Hajj, “Higher-order ionospheric effects on the global positioning system observables and means of modeling them”, Manuscripata Geodaetica, Vol. 18, No. 5, pp. 280-289 (1993).
    Counselman, C. C., III and R. I. Abbot, “Method of Resolving Radio Phase Ambiguity in Satellite Orbit Determination,” Journal of Geophysical Research, Vol. 94, No. B6, pp. 7058-7064 (1989).
    E1-Mowafy, A. M., and K. P. Schwarz., “Epoch-by-epoch ambiguity resolution for real-time attitude determination using a GPS multiantenna system”, Navigation, Vol. 42, No. 2, pp. 391-408 (1995).
    Frei, E. and G. Beutler, “Rapid Static Positioning Based on the Fast Ambiguity Resolution Approach ‘FARA’: Theory and First Results,” Manuscripta Geodaetica, Vol. 15, No. 6, pp. 325-356 (1990).
    Hatch, R. R., “ The promise of a third frequency,” GPS World, Vol. 7, No. 5, pp. 55-58 (1996).
    Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins, Global Positioning System Theory and Practice, Springer-Verlag, Wien (1997).
    King, R. W., E. G. Master, C. Rizos, A. Stolz, and J. Collins, Surveying with Global Positioning System -GPS-, Ferd. D mmlers Verlag, Bonn, pp. 1-128 (1985).
    Kuang, D. , B. E. Schutz, and M. M. Watkins, “On the Structure of Geometric Positioning Information in GPS Measurements,” Journal of Geodesy, Vol. 71, No. 1, pp. 35-43 (1996).
    Lachapelle, G. , M. E. Cannon, and G. Lu, “High-precision GPS navigation with emphasis on carrier-phase ambiguity resolution”, Marine Geodesy, Vol. 15, No. 4, pp. 253-269 (1992).
    Leick A., GPS Satellite Surveying, John Wiley and Sons, New York (1995).
    Lu, G. and M. E. Cannon, “Attitude determination using a multi-antenna GPS system for hydrographic application”, Marine Geodesy, Vol. 17, No. 4, pp.237-250 (1994).
    Mader, G. L., “Rapid static and kinematic global positioning system solutions using the ambiguity function technique”, Journal of Geophysical Research, Vol. 97, No. B3, pp. 3271-3283 (1992).
    Mikhail, E. M., Observations and Least Squares, University Press of America, Lanham (1976).
    Remondi, B. W., “Pseudo-Kinematic GPS Results Using the Ambiguity Function Method,” Navigation, Vol. 38, No. 1, pp. 17-36 (1991).
    Scherrer, R., The WM GPS Primer, WM Satellite Survey Company, Wild Heerbrugg, Heerbrugg (1985).
    Schwarz, C. R. and J. J. Kok, “Blunder detection and data snooping in LS and robust adjustments”, Journal of Surveying Engineering, Vol. 119, No. 4, pp. 127-136 (1993).
    Teunissen, P. J. G., “The Least-Squares Ambiguity Decorrelation Adjustment a Method for Fast GPS Integer Ambiguity Estimation,” Journal of Geodesy, Vol. 70, pp. 65-82 (1995).
    Teunissen, P. J. G. and A. Kleusberg, “GPS Observation Equations and Positioning Concepts,” In: Kleusberg, A. And P. J. G. Teunissen (eds), GPS for Geodesy,Lecture Notes in Earth Sciences, Vol. 60, No. 5, Springer-Verlag, Berlin, pp. 175-217 (1996).
    Teunissen, P. J. G., “The geometry-free GPS ambiguity search space with a weighted ionsphere”, Journal of Geodesy, Vol. 71, No. 6, pp. 370-383 (1997).
    Wang, J., Stewart, M. P., and Tsakiri, M., “A discrimination test procedure for ambiguity resolution on-the-fly”, Journal of Geodesy, Vol. 72, No. 11, pp. 644-653 (1998).
    Wu, J., and F.-G. Yiu., “Cosine functions of GPS carrier phases for parameter estimation”, Journal of Surveying Engineering, Vol. 123, No. 3, pp. 113-125 (1997).

    QR CODE
    :::