跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林師勤
Shih-Chyn Lin
論文名稱: 介電電濕式數位微流體驅動系統之探討
Study of EWOD-based Actuation for Digital Microfluidic System
指導教授: 楊宗勳
Tsung-Hsun Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 92
語文別: 英文
論文頁數: 116
中文關鍵詞: 生物晶片實驗室晶片接觸角介電電濕微流體
外文關鍵詞: microfluidic, lab on a chip, biochip, EWOD, electrowetting on dielectric, contact angle
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討介電電濕式(electrowetting on dielectric)微流體元件的設計與製作。此元件展現即時微流體系統的潛能,並且能應用於實驗室平台晶片(lab-on-a-chip)、微全分析系統(micro total analysis system)。而微小化後的元件則有:減少樣本(sample)的體積、低成本、可拋式以及可攜帶性等優點。
    本文以介電電濕法來製作微流體系統元件。首先,液滴在不同性質表面的接觸角被提出來討論。其次,比較傳統型、覆晶型與所提出改良型製程之優缺點。再來探討一維(1-D)與二維(2-D)的介電電濕元件在不同的介電層、不同的通道間距與不同濃度的鐵氟龍(DuPont Teflon® AF)溶液情況下,元件操作的情形。本文製作的介電電濕式微流體系統元件,在透過電漿輔助化學氣相沉積系統(PECVD)所成長出的介電層,其在大氣環境下的操作電壓約為35伏特。而微流體系統四種基本的操作模式也在此實驗中展現。此外,由螢光棒所分離出來的兩種液體,研究兩種不同的液滴在合併後內部混合的現象。最後,藉由這兩種液體混合後所發出的螢光,提出一種利用介電電濕微流體元件所構成的去氧核醣核酸(DNA)雜交反應(hybridization)元件與其反應速率的即時監測系統。


    This thesis reports the design and fabrication of an electrowetting on dielectric (EWOD) microfluidic device that has the potential to demonstrate technologies for real-time microfluidic system applications in lab-on-a-chip (LoC) or micro total analysis system (µTAS). In such a way, the merits of miniaturized device are much smaller volume of samples, low cost, disposable, and portable.
    The microfluidic system is based on the principle of EWOD. First, contact angles of droplets on different surface were discussed. Second, the fabrication of EWOD devices by the conventional and the flip-flop processes were compared with the improved process and their advantages and disadvantages were also discussed. Third, 1-D and 2-D EWOD devices were tested for various fabrication parameters including materials for dielectric layer, gap spacing, and concentration of Teflon® AF. With the dielectric layer deposited by PECVD, the driving voltage of the EWOD-based microfluidic system was around 35 V in air environment. In experiments, the four fundamental operations of microfluidic system were carried out in the EWOD device. In addition, two droplets extracted from the light stick were applied to investigate the mixing process in real time. To the end, a novel configuration for real time monitoring on DNA hybridization reaction rate was proposed on the base of the EWOD microfluidic device.

    Chapter 1 Introduction .................................................1 Chapter 2 Actuation of Microfluidics ...................................8 2.1 Principles of Microfluidic Actuation .......................8 2.2 Surface Tension ............................................9 2.3 Microactuation Using Surface Tension ......................13 2.3.1 Electrocapillary ....................................13 2.3.2 Continuous Electrowetting ...........................14 2.3.3 Electrowetting ......................................17 2.3.4 Electrowetting on Dielectric (EWOD) .................19 2.4 Microfluidic Devices ......................................25 Chapter 3 Design and Fabrication of EWOD-Based Microfluidic Device ....27 3.1 Contact Angle Measurement .................................27 3.2 EWOD-based Microfluidic Device Design .....................35 3.2.1 EWOD Driving Voltage ................................35 3.2.2 Photolithographic Mask of EWOD Pattern ..............38 3.3 Process Condition of EWOD Device ..........................39 3.3.1 Conventional Process of EWOD Device .................39 3.3.2 Improved Process of EWOD Device .....................43 3.3.3 Flip-chip Process of EWOD Device ....................51 3.3.4 Summary .............................................56 Chapter 4 Tests and Results of EWOD-based Microfluidic Devices ........57 4.1 The Goal of EWOD-based Microfluidic Device ................57 4.2 Experiment Setup of EWOD-based Microfluidic Device ........59 4.3 Tests of 1-D EWOD-based Microfluidic Devices ..............62 4.3.1 SiNx, 200 Å Teflon AF film and 70 µm channel gap ....64 4.3.2 SiNx, 600 Å Teflon AF film and 70 µm channel gap ....67 4.3.3 SiNx, 200 Å Teflon AF film and 1 µm channel gap .....70 4.3.4 SiNx, 600 Å Teflon AF film and 1 µm channel gap .....72 4.3.5 SiO2, 200 Å Teflon AF film and 70 µm channel gap ....74 4.3.6 SiO2, 600 Å Teflon AF film and 70 µm channel gap ....76 4.3.7 SiO2, 200 Å Teflon AF film and 1 µm channel gap .....79 4.3.8 SiO2, 600 Å Teflon AF film and 1 µm channel gap .....81 4.4 Tests of 2-D EWOD-based Microfluidic Devices ..............84 4.4.1 SiNx and 200 Å Teflon AF film .......................85 4.4.2 SiNx and 600 Å Teflon AF film .......................88 4.4.3 SiO2 and 200 Å Teflon AF film .......................91 4.4.4 SiO2 and 600 Å Teflon AF film .......................94 4.5 Summary ...................................................97 Chapter 5 Applications of EWOD-based Microfluidic System .............101 5.1 Droplets Merging .........................................101 5.2 Real-time Monitor for DNA Hybridization Reaction Rate ....106 Chapter 6 Conclusion .................................................110 Reference ............................................................112

    [1] M. Madou, Fundamentals of Microfabrication. Boca Raton, FL: CRC, Ch.9, 1997
    [2] G. T. A. Kovacs, Micromachined Transducers Sourcebook. New York: McGraw - Hill, Ch. 9, 1998.
    [3] C.-M Ho, “Fluidics-the link between micro and nano sciences and
    technologies-,” in Proc. IEEE Int. Conf. MEMS, Interlaken, Switzerland,
    pp. 375–384, 2001
    [4] S.K. Cho, H. Moon, and C.J. Kim, “Creating, transporting, cutting, and
    merging liquid droplets by electrowetting-based actuation for digital
    microfluidic circuits,” Microelectromechanical Systems, Journal of , Vol.
    12 , No. 1 , pp. 70-80, 2003
    [5] S. Shoji, “Microsystem Technology in Chemistry and Life Science,” H.
    Becker, A. Manz, Eds., Vol. 194, pp. 164-188, 1998
    [6] J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C.J. Kim,
    “Electrowetting and electrowetting-on-dielectric for microscale liquid
    handling,” Sens. Actuators, Phys. A, Vol. 95, pp. 259–268, 2002
    [7] P.C. Hiemenz, Principles of Colloid and Surface Chemistry, Marcel Dekker,
    New York, Ch. 6 and 12, 1986
    [8] T. K. Jun and C.-J. Kim, “Valveless pumping using traversing vapor
    bubbles in microchannels,” J. Appl. Phys., Vol. 83, No. 11, pp. 5658–
    5664, 1998.
    [9] T. A. Sammarco and M. A. Burns, “Thermocapillary pumping of discrete
    drops in microfabricated analysis devices,” AIChE J., Vol. 45, No. 2, pp.
    350–366, 1999
    [10] H. Matsumoto and J. E. Colgate, “Preliminary investigation of
    micropumping based on electrical control of interfacial tension,” in
    Proc. IEEE MEMS Workshop, Napa Valley, CA, pp. 105-110, 1990
    [11] B. Berge, “Electrocapillarity and wetting of insulator films by water,”
    Comptes Rendus de l’Academie des Sciences Serie II, Vol. 317, pp.157–
    163, 1993.
    [12] M. W. J. Prins, W. J. J. Welters, and J. W. Weekamp, “Fluid control in
    multichannel structures by electrocapillary pressure,” Science, Vol.
    291, pp. 277–280, 2001
    [13] B. Berge, C. R. Acad. Sci. Ser. II, 317, 157, 1993.
    [14] G. Beni, and M. A. Tenan, “Dynamics of electrowetting displays,” J.
    Appl. Phys., Vol. 52, pp. 6011-6015, 1981
    [15] J. L. Jackel, S. Hackwood, J. J. Veselka, and G. Beni, “Electrowetting
    switch for multimode optical fibers,” Appl. Opt. Vol. 22, pp.1765-1770,
    1983
    [16] G. Beni, and S. Hackwood, “Electro-wetting displays,” Appl. Phys. Lett.
    Vol. 38, pp. 207-209, 1981
    [17] J. L. Jackel, S. Hackwood, and G. Beni, “Electrowetting optical
    switch,” Appl. Phys. Lett., Vol. 40, pp.4-5, 1982
    [18] M. Vallet, M. Vallade, and B. Berge, “Limiting phenomena for the
    spreading of water on polymer films by electrowetting,” Eur. Phys. J. B
    11, pp. 583-591, 1999
    [19] M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based
    actuation of liquid droplets for microfluidic applications,” Appl. Phys.
    Lett., Vol. 77, No. 11, pp. 1725–1726, 2000
    [20] J. Lee, H. Moon, J. Fowler, C.-J. Kim, and T. Schoellhammer,
    “Addressable micro liquid handling by electric control of surface
    tension,” in Proc. IEEE Int. Conf. MEMS, Interlaken, Switzerland, pp.
    499-502, 2001
    [21] S. K. Cho, H. Moon, J. Fowler and C.J. Kim, “Splitting a liquid droplet
    for electrowetting-based microfluidics,” in International Mechanical
    Engineering Congress and Exposition, New York, NY, Nov. 2001,
    IMECE2001/MEMS-23 831.
    [22] R. B. Fair, M. G. Pollack, R. Woo, V. K. Pamula, R. Hong, T. Zhang, and
    J. Venkatraman, “A micro-watt metal-insulator-solution-transport (MIST)
    devices for scalable digital bio-microfluidic systems,” in Electron
    Devices Meeting, IEDM Technical Digest International, Washington DC,
    pp.16.4.1–16.4.4, 2001
    [23] M. G. Pollack, A. D. Shenderov, and R. B. Fair, “Electrowetting-based
    actuation of droplets for integrated microfluidics,” Lab Chip, Vol. 2,
    pp. 96–101, 2002
    [24] S. K. Cho, S.-K Fan, H. Moon, and C.-J Kim, “Toward digital microfluidic
    circuits: creating, transporting, cutting and merging liquid droplets by
    electrowetting-based actuation,” in Proc. IEEE Int. Conf. MEMS, Las
    Vegas, NV, pp. 32–35, 2002
    [25] J. Fowler, H. Moon, and C.J. Kim, “Enhancement of mixing by droplet
    based microfluidics,” in Proc. IEEE Int. Conf. MEMS, Las Vegas, NV, pp.
    97–100, 2002
    [26] P. Paik, V. K. Pamula, and R. B. Fair, “Rapid droplet mixers for digital
    microfluidic systems,” Lab Chip, Vol. 3, pp. 253–259, 2003
    [27] Trimmer, W.S.N., “Microrobots and Micromechanical Systems,” Sensors and
    Actuators, Vol. 19, No.3, pp. 267-287, 1989.
    [28] J. Lee, and C.J. Kim, “Surface-Tension-Driven Microactuation Based on
    Continuous Electrowetting,” J. Microelectromech. Syst., Vol. 9, No. 2,
    pp. 171-180, 2000
    [29] R. P. Feynman, “Infinitesimal machinery,” J. Microelectromech. Syst.,
    Vol. 2, pp. 4–14, 1993
    [30] R. Legtenberg, J. Elders, and M. Elwenspoek, “Stiction of Surface
    Microstructures after Rinsing and Drying: Model and Investigations of
    Adhesion Mechanisms,” Transducers, Yokohama, pp.198-201, 1993
    [31] C. J. Kim, “MEMS devices based on the use of surface tension,” ISDRS,
    Charlottesville, VA, 1999.
    [32] T.A. Mcmahon, and J.T. Bonner, On Size and Life, Scientific American
    Books, New York (1983)
    [33] J. Lee, Dissertation “Microactuation by Continuous Electrowetting and
    Electrowetting: Theory, Fabrication and Demonstration”, UCLA, 2000
    [34] P.C. Hiemenz, Principles of Colloid and Surface Chemistry, Marcel Dekker,
    New York, Ch. 6&12, 1986
    [35] G. Beni, S. Hackwood, and J.L. Jackel, “Continuous Electrowetting
    Effect,” Appl. Phys. Lett., Vol. 40, No. 10, pp. 912-914, 1982
    [36] J. O. M. Bockris, and A. K. N. Reddy, Modern electrochemistry, Plenum
    Press, New York, Ch. 7 and 8, 1970
    [37] A.W. Adamson, and A.P. Gast, Physical Chemistry of surfaces, John Wiley
    and Sons Inc., New York, Ch. 5, 1997
    [38] N.K. Adam, The Physics and Chemistry of Surfaces, Oxford University
    Press, London, Ch. 1, 8, 9, 1941
    [39] M. G. Lippmann, “Relations entre les phénomènes electriques et
    capillaires,” Ann. Chim. Phys., Vol. 5, No. 11, pp. 494–549, 1875
    [40] H. Moon, S.K. Cho, R.L. Garrell, and C.J. Kim, “Low voltage
    electrowetting- on-dielectric,” J. Appl. Phys., Vol. 92, pp. 4080–4087,
    2002
    [41] J. Ulrich and R. Zengerle, “Static and dynamic flow simulation of a KOH
    etched microvalve using the finite-element method,” Sensors and
    Actuators A, Vol. 53, pp. 379–385, 1996
    [42] J. Pfahler, J. harley, and H. Bau, “Liquid transport in micro and
    submicron channels,” Sensors and Actuators A, Vol. 22, 1990.
    [43] A. Rasmussen and M. E. Zaghloul, “The design and fabrication of
    microfluidic flow sensors,” in Proc. Int. Symposium on Circuits and
    Systems, Vol. 5, pp. 136–139, 1999
    [44] H. J. I. Verheijen and M. W. J. Prins, “Reversible electrowetting and
    trapping of charge: model and experiments,” Langmuir, Vol. 15, pp. 6616–
    6620, 1999
    [45] V. Peykov, A. Quinn, and J. Ralston, “Electrowetting: a model for
    contact-angle saturation,” Colloid Polymer Sci., Vol. 278, pp. 789–793,
    2000

    QR CODE
    :::