跳到主要內容

簡易檢索 / 詳目顯示

研究生: 何峻宇
Jiun-Yu Ho
論文名稱: 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
Adsorbate-induced restructuring in Au-Pt bimetallic nanoclusters on Al2O3/NiAl(100
指導教授: 羅夢凡
Meng-Fan Luo
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 99
語文別: 英文
論文頁數: 90
中文關鍵詞: 奈米團簇重構吸附物白金
外文關鍵詞: nanocluster, restructuring, Pt, Adsorbate, Au
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用同步輻射幅射光源激發電子能譜儀(PES)來研究吸附物引發金與白金所形成的合金奈米團簇在氧化鋁薄膜上的重構現象。在超高真空的環境下(小於 3 x 10-10) ,利用物理氣相沉積法將奈米團簇成長在完整且有序的氧化鋁薄膜 Al2O¬3/NiAl(100)上。從PES能譜圖中,當我們在120 K低溫下吸附甲醇、乙醇、環己烯時會引發金原子聚集在合金奈米團簇表面上。然而,我們發現從甲醇或是乙醇分解出來的CO會殘留在表面上並且會影響金原子的移動。
    當我們把樣品升高到 650 – 800 K的退火溫度時,合金的結構已經有所改變:白金奈米粒子已經形成氧化態的結構並且在合金奈米團簇表面上覆蓋了一層 PtxAlyOz 物質和部分些許的金。之後我們在120 K吸附甲醇、乙醇這些含有OH- 官能基的分子時,我們可以發現到經過退火過程的合金奈米團簇表面上的氧化白金還原成金屬性的白金,並且和存在於表面上的金再次形成合金。相反的,當我們吸附環己烯(只有(CHn-) group) 時,並沒有類似的情形發生。


    We have studied the adsorbate-induced restructuring of Au-Pt bimetallic nanoclusters on the well-defined θ-Al2O3/NiAl(100) by using synchrotron-based high-resolution photoemission spectroscopy (PES). The Au-Pt bimetallic clusters were vapor deposited on ordered thin film Al2O3 at 300 K. Upon adsorption of adsorbates, such as methanol, ethanol and cyclohexene, the Au atoms aggregate at the surface of clusters. However, we find that the CO from methanol (and/or ethanol) decomposition remains on the surface and block the aggregation of Au atoms.
    After annealing to 650 - 800 K, the metallic Pt become oxidized Pt and the surface of clusters is coated with alumina materials; some Au are exposed at the surface. Adsorbing the hydroxyl group (-OH) such as CH3OH and C2H5OH, the annealed Au-Pt bimetallic undergo dramatic changes in chemical state—oxidized Pt is reduced to metallic Pt, and thus Pt alloys with Au again. In contrast, no substantial alternation was found in the oxidized bimetallic clusters exposed to C6H10 which had only (CHn-) group.

    Chapter 1 Introduction...................................1 Reference .................................................4 Chapter 2 Basic concepts and literature survey...........6 2.1 The properties of NiAl(100)...........................6 2.1.1 Al2O3/NiA(100)..................................8 2.1.2 Phases of Al2O3 grown on NiAl(100)..............9 2.2 Metal nanoclusters growth on the ultra-thin oxide surface..............................................11 2.3 Literature survey for structures of Au-Pt bimetallic nanoclusters and adsorbates induced change for other alloy nanoclusters...................................14 Reference................................................26 Chapter 3 Introduction to the Instruments...............29 3.1 UHV system...........................................29 3.2 XPS Analysis system..................................32 3.3 X-ray Photoelectron Spectroscopy (XPS)...............33 3.4 Experimental methods.................................40 3.4.1 Sample cleaning................................40 3.4.2 Oxygen exposure and growth of Al2O3 ultra-thin film...........................................41 3.4.3 Metal deposition on Al2O3/NiAl(100)............42 3.4.4 Adsorbate adsorption and desorption............43 Reference ................................................44 Chapter 4 Results and Discussions.......................45 4.1 The structure of pristine Au-Pt bimetallic nanoclusters.....................................45 4.1.1 Methanol induced restructuring on Au-Pt bimetallic nanoclusters........................49 4.1.2 Adsorbates (other than methanol) induced restructuring in bimetallic Au-Pt nanoclusters ...............................................61 4.2 Temperature induced restructuring in bimetallic Au-Pt nanoclusters.........................................68 4.3 The methanol induced changes in the annealed (650 - 800 K) Au-Pt bimetallic nanoclusters.................72 4.3.1 The effect of other adsorbates on annealed Au-Pt bimetallic nanoclusters........................82 Reference................................................88 Chapter 5 Conclusions....................................90

    Chapter 1
    [1]. Theory of Atomic and Molecular Clusters; Jellinek, J., Ed.; Springer: Berlin, 1999.
    [2]. Johnston, R. L. Atomic and Molecular Clusters; Taylor and Francis: London, 2002.
    [3]. Baletto, F.; Ferrando, R. ReV. Mod. Phys. 2005, 77, 371
    [4]. Jortner, J. Z. Phys. D 1992, 24, 247.
    [5]. Johnston, R. L. Philos. Trans. R. Soc. London A 1998, 356, 211.
    [6]. Andrews, M. P.; O’Brien, S. C. J. Phys. Chem. 1992, 96, 8233.
    [7]. Ruban, A. V.; Skriver, H. L.; Norskov, J. K. Phys. ReV. B 1999, 59, 15990.
    [8]. Bozzolo, G.; Ferrante, J.; Noebe, R. D.; Good, B.; Honecy, F. S.; Abel, P. Comput. Mater. Sci. 1999, 15, 169
    [9]. Molenbroek, A. M.; Haukka, S.; Clausen, B. S. J. Phys. Chem. B 1998, 102, 10680.
    [10]. Schmid, G. In Metal Clusters in Chemistry; Braunstein, P., Oro, L. A., Raithby, P. R., Eds.; Wiley-VCH: Weinheim, 1999; Vol. 3, p 1325.
    [11]. V. Johanek, N. Tsud, V. Matolin, I. Stara, Vacuum 63 (2001) 15 – 22.
    [12]. S. Garbarino, A. Ponrouch, S. Pronovost, D. Guay, Electrochem Commun. 11 (2009) 1449.
    [13]. L. Gan, Y. Zhang, Y. Zhao, J. Phys. Chem. C 114 (2010) 996.
    [14]. A. S. Arico, A. K. Shukla, H. Kim, S. Park, M. Min, V. Antonucci, Appl. Surf. Sci. 172 (2001) 33.
    [15]. A. Sumer, A. E. Aksoylu, J. Phys. Chem. C 113 (2009) 14329.
    [16]. C. D. Pina, E. Falletta, M. Rossi, J. Catal. 260 (2008) 384.
    [17]. T. Nowitzki, H. Borchert, B. Jurgens, T. Risse, V. Zielasek, M. Baumer, Chem Phys Chem 9 (2008) 729.
    [18]. F. Tao et al Science 322 (2008) 932.
    [19]. M. F. Luo, C. C. Wang, G. R. Hu, W. R. Lin, C. Y. Ho, Y. C. Lin, Y. J. Hsu, J. Phys. Chem. C 113 (2009) 21054.
    [20]. E. Bus, J. A. Bokhoven, Phys Chem Chem Phys 9 (2007) 2894.
    [21]. K. J. Kim, H. G. Ahn, Appl Catal B Env 91 (2009) 308.
    [22]. W. Tang, S. Jayaraman, T. F. Jaramillo, G. D. Stucky, E. W. McFarland, J. Phys.Chem. C 113 (2009) 5014.
    Chapter 2
    [1]. Bor-Ru Sheu and D. R. Strongin, Journal of ctalysis 154 (1995) 379-390.
    [2]. Ch. ToÈlkes, R. Struck, R. David, P. Zeppenfeld, G. Comsa, Phys. Rev. Lett. 80 (1998) 2877.
    [3]. N. Frèmy, V. Maurice, P. Marcus, J. Am. Ceram. Soc. 86, 669 (2003)
    [4]. D.R. Mullins, S.H. Overbury, Surf. Sci. 199 (1988) 141
    [5]. M. S. Zei, C. S. Lin, W. H. Wen, C. I. Chiang, M. F. Luo, Surf. Sci. 600, 1942 (2006)
    [6]. R. M. Jaeger, H. Kuhlenbeck, H. J. Freund, M. Wutting, W. Hoffman, R. Franchy, H. Ibach, Surf. Sci. 259 (1991) 235.
    [7]. J. Libuda, F. Winkelmann, M. Baumer, H. J. Freund, T. Bertrams, H. Neddermeyer, K. Muller, Surf. Sci. 318 (1994) 61.
    [8]. H. Kno¨zinger, J. Weitkamp, Handbook of Heterogeneous Catalysis, VCH, Weinheim (1997).
    [9]. R. Franchy, J. Masuch, P. Gassmann, Appl. Surf. Sci. 93, 317 (1996)
    [10]. N. Frèmy, V. Maurice, P. Marcus, Surf. Interface Anal. 314, 519 (2002)
    [11]. R. Franchy, Surface Science Reports 38 195-294 (2004)
    [12]. P. Gassmann, R. Franchy, H. Ibach, Surface Science 319 95-109 (1994)
    [13]. K.-H. Hellwege, Ed., Landolt-Börnstein, Bd.ш/7b(Springer, Heidelberg, 1975).
    [14]. R. P. Blum, D. Ahlbehrendt, H. Niehus, Surf. Sci. 396, 176 (1998)
    [15]. Bell, A. T. Science 2003, 299, 1688
    [16]. Rolison, D. R. Science 2003, 299, 1688
    [17]. Biswas, P. Wu, C. Y. J. Air Waste Manage. Assoc. 2005, 55, 708
    [18]. Valden, M. Goodman, D. W. Science 1998, 281, 1647
    [19]. A. K. Santra and D.W. Goodman1, J. Phys.: Condens. Matter 14 (2002) R31–R62.
    [20]. Yang Z, Goodman D W and Wu R 2000 Phys. Rev. B 61 14066
    [21]. Holmblad P M, Rainer D R and Goodman D W 1997 J. Phys. Chem. 101 8883
    [22]. R. Franchy, Surface Science Reports 38 (2000) 195 – 294.
    [23]. A. J. Henglein, Phys. Chem. B 104 (2000) 2201.
    [24]. J. Belloni, M. Mostafavi, H. Remita, J. L. Marignier, M. O. Delcourt, New J. Chem. 22 (1998) 1239.
    [25]. H. B. Liu, U. Pal, J. A. Ascencio, J. Phys. Chem. C 112 (2008) 19173
    [26]. Jose Yacaman, M.; Ascencio, J. A.; Liu, H. B. J. Vac. Sci. Technol.B 2001, 19, 1091.]
    [27]. W. Tang, S. Jayaraman, T. F. Jaramillo, G. D. Stucky, E. W. McFarland, J. Phys. Chem. C 113 (2009) 5014.
    [28]. S. Gottesfeld, M.T. Paffett, A. Redondo, J. Electroanal. Chem. 205 (1986) 163
    [29]. K.A. Daube, M.T. Paffett, S. Gottesfeld, C.T. Campbell, J. Vac. Sci. Technol. A4 (1986) 1617
    [30]. M.T. Paffett, K.A. Daube, S. Gottesfeld, C.T. Campbell, J. Electroanal. Chem. 220 (1987) 269.
    [31]. K.T. Kim, J.T. Whang, Y.G. Kim, J.S. Chung, J. Electrochem. Soc. 140 (1993) 31.
    [32]. Aric, A. S. ; Shukla, A.K. ; Kim, H. ; Park S. ; Min, M. ; Antonucci, V. Appl. Surf. Sci. 2001, 172,33.
    [33]. Greeley, J.; Norskov, J. K.; Mavrikakis, M. Annu. ReV. Phys. Chem. 2002, 53, 319
    [34]. J. Luo, P. N. Njoki, Y. lin, L. Wang, C. J. Zhong, Electrochem. Commun. 8 (2006) 581.
    [35]. Y. Ma, H. Zhang, H. Zhong, T. Xu, H. Jin, X. Geng, Catal. Comun. 11 (2010) 434.
    [36]. C. Mihut, C. Descorme, D. Duprez, M. D. Amiridis, J. Catal. 212 (2002) 125.
    [37]. Goodenough, J. B.; Manoharan, R.; Shukla, A. K.; Ramesh, K. V. Chem. Mater. 1989, 1, 391.
    [38]. Shukla, A. K.; Arico`, A. S.; El-Khatib, K. M.; Kim, H.; Antonucci, P. L.; Antonucci, V. Appl. Surf. Sci. 1999, 137, 20
    [39]. Trasatti, S. J. Electroanal. Chem. 1971, 33, 351.
    [40]. M. G. Ramsey, F. P. Leisenberger, F. P. Netzer, Surf. Sci. 385, (1997) 207-215
    [41]. F. Tao et al, Science 322 (2008) 932.
    [42]. M. F. Luo, C. C. Wang, G. R. Hu, W. R. Lin, C. Y. Ho, Y. C. Lin, Y. J. Hsu, J. Phys. Chem. C 113 (2009) 21054.
    [43]. Santra, A. K.; Goodman, D. W. J. Phys.: Condens. Matter 2002,14, R31.
    [44]. Dicenzo, S. B.; Berry, S. D.; Hartford, E. H. Phys. ReV. B 1988, 38, 8465
    Chapter 3
    [1]. 真空技術與應用(Vacuum technology & Application), 國家科學委員會精密儀器發展中心出版.
    [2]. H. Luth, Surfaces and Interfaces of Solids, Springer-Verlag, 1993
    [3]. J. C. Vickerman, Surface Analysis – The Principal Techniques, Jon Wiley & Sons,1997
    [4]. A.K. Stantra and D.W. Goodman, J. Phys: Condens. Matter 14(2002) R31-R62
    [5]. D.j. O’Connor, B.A. Sexton, R. St. C. Smart, Surface Analysis Methods in Materials Science, Springer-Verlag, 1992
    [6]. John F. Watts, John Wolstenholme , An introduction of surface analysis by XPS
    [7]. Y. W. Yang, L. J. Fan, Langmuir 18, 1157-1164(2002)
    [8]. Maurice, V.; Fre`my, N.; Marcus, P. Surf. Sci. 2005, 581, 88.
    [9]. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Physical Electronics, Inc.: Eden Prarie, MN, 1995.
    [10]. Sartale, S. D.; Shiu, H. W.; Tien, M. H.; Chiang, C. I.; Luo, M. F.; Lin, Y. C.; Hsu, Y. J. J. Phys. Chem. C 2008, 112, 2066.
    [11]. Jaeger, R. M.; Kuhlenbeck, K.; Freund, H.-J.; Wuttig, M.; Hoffmann, W.; Franchy, R.; Ibach, H. Surf. Sci. 1991, 259, 235
    [12]. Andersson, S.; Bru˝hwiler, P. A.; Sandell, A.; Frank, M.; Libuda, J.; Giertz, A.; Brena, B.; Maxwell, A. J.; Ba¨umer, M.; Freund, H.-J.; Mårtensson, N. Surf. Sci. 1999, 442, L964.
    [13]. H. Luth, Surfaces and Interfaces of Solids, Springer-Verlag, 1993.
    [14]. P. Gassmann, R. Franchy, H. Ibach, Surf. Sci.319,95 1994
    Chapter 4
    [1]. Andersson, S.; Bru¨hwiler, P. A.; Sandell, A.; Frank, M.; Libuda,J.; Giertz, A.; Brena, B.; Maxwell, A. J.; Ba¨umer, M.; Freund, H.-J.;Mårtensson, N. Surf. Sci. 1999, 442, L964.
    [2]. Felicissimo, M. P.; Martyanov, O. N.; Risse, T.; Freund, H.-J. Surf.Sci. 2007, 601, 2105.
    [3]. A. Bzowski, T.K. Sham, Phys. Rev. B 48(1993) 7836.
    [4]. Chen, M.; Cai, Y.; Yan, Z.; Goodman, D. W. J. Am. Chem. Soc. 2006, 128, 6341
    [5]. M. Kuhn, J.A. Rodriguez, J. Hrbek, A. Bzowski, T.K. Sham, Surf. Sci. 341
    (1995) L1011
    [6]. A. Bzowski, T.K. Sham, R.E.Watson, M.Weinert, Phys. Rev. B 51 (1995)
    9979.
    [7]. P.M.Th.M. van Attekum, G.K. Wertheim, G. Crecelius, J.H. Wernick,
    Phys. Rev. B 22 (1980) 3998.
    [8]. Gland, J. L.; Sexton, B. A.; Fisher, G. B. Surf. Sci. 1980, 95, 587.
    [9]. Sheu, B.-R.; Strongin, D. R. J. Catal. 1995, 154,379
    [10]. Schauermann, S.; Hoffmann, J.; Johanek, V.; Hartmann, J.; Libuda, J. Phys. Chem. Chem. Phys. 2002, 4, 3909
    [11]. A.F. Lee et al. / Surface Science 548 (2004) 200–208
    [12]. Shrikrishina D. Sartale Catal Lett (2007) 119:95–100
    [13]. M.F.Luo J. Phys. Chem. C, Vol. 113, No. 28, 2009 12420
    [14]. M.S. Chen, D.W. Goodman, Science 306 (2004) 252.
    [15]. Rhee, C. K.; Wakisaka, M.; Tolmachev, Y. V.; Jhonston, C. M.; Haasch, R.; Attenkofer, K.; Lu, G. Q.; You, H.; Wieckowski, A. J. Electroanal. Chem. 2003, 367, 554–555.
    [16]. Devarajan, S.; Bera, P.; Sampath, S. J. Colloid Interface Sci. 2005,290, 117
    [17]. M. P. Casaletto et al. Surf. Interface Anal. 2006; 38: 215–218
    [18]. M. Carbone et al. Surface Science 352-354 ,1996, 391-395
    [19]. Yuhai Hu, Keith Griffiths Surface Science 601 (2007) 5002–5009
    [20]. N. Kizhakevariam, E. M. Stuve Surface Science 286 (1993) 246-260

    QR CODE
    :::