| 研究生: |
鄭家瑋 Chia-wei Cheng |
|---|---|
| 論文名稱: |
鋼床鈑鋪面有限元素破壞分析及較適載重位置探討 |
| 指導教授: | 張瑞宏 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 力學-經驗準則 、有限元素法 、鋼床鈑鋪面 |
| 外文關鍵詞: | Mechanics-Empirical guide, Finite element method, Steel deck pavement |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地區近年來興建橋梁採用鋼橋日益增加,鋼橋常位於交通要道上,對於頻繁的交通所帶來之衝擊,橋面上鋼床鈑之鋪面必須相應地提供優良的效能,以延長鋪面之使用年限。然而,鋼床鈑鋪面目前在國內鮮少以力學理論對於其破壞行為之研究,因此本研究以此為出發點,以力學理論為基礎,利用有限元素程式ABAQUS軟體,在考慮高軸重高胎壓之重車載重下,進行不同載重位置搭配不同鋼床鈑鋪面材料組合之力學分析,以瞭解鋼床鈑鋪面破壞之原因並探討較適載重位置;接著進一步以力學-經驗準則進行鋼床鈑鋪面破壞程度之評估,藉此找出鋼床鈑鋪面可能之破壞模式以及破壞位置。
研究結果顯示,鋼床鈑鋪面單層與雙層不同載重位置造成之變化趨勢大致相同;當載重於鋼床鈑鋪面沿肋梁上方行進時,不論是單層或雙層皆可能造成最大之主應變值,其發生位置於胎印中心正下方;不論從張應變或壓應變角度來看,或者以不同載重位置造成之力學行為變化趨勢來看,對於材料配置原則本研究建議以鋼床鈑鋪面材料勁度較大者置於底層,次大者置於面層,為較佳材料配置原則。此外,比較雙軸雙輪與單軸雙輪之分析結果後,可發現雙軸雙輪其前後軸並不像傳統公路鋪面會互相影響應變場之大小,因此載重軸型之不同對於鋼床鈑鋪面結構影響不大;計算結果顯示鋼床鈑鋪面破壞模式大致上是由上至下之縱向開裂最先發生,即車轍相對於疲勞裂縫較晚發生,因此鋼床鈑鋪面破壞模式應是由疲勞裂縫控制。
In recent years the construction of the steel bridges are getting more popular in Taiwan. The steel bridges are usually located on traffic artery. Hence, the pavement of the steel deck on the bridge must provide excellent efficiency to extend the service life of pavement for the traffic impact. This study utilized finite element method to analyze the mechanical response under the different load positions and various flexible pavement material combinations which heavy vehicle load with high axle load and high tire pressure were considered. And this study also used the Mechanics-Empirical guide to evaluate the extent of damage about the steel deck pavement and to identify failure mode and failure location.
The results show that, for the steel deck, both one-course pavement and two-course pavement exhibit approximately the same trend under different load position. When the vehicle load moves along the rib on steel deck pavement, either one-course or two-course causes the maximum principal strain under the center of tire trace. The traditional pavement material configuration is not suitable for use in the steel deck pavement indeed, thus this study suggested that the pavement material which has greater stiffness should be placed in the bottom, and lower one should be placed in the top. When dual-tandem wheels are applied on the traditional pavement, the mechanical behavior for the front and rear axles significantly interact with each other. However, when dual-tandem wheels are applied on the steel deck pavement, the results show that, the mechanical behavior for the front and rear axles does not influence with each other. The failure mode of the steel deck pavement, according to the numerical results is observed to be the top-down fatigue cracking.
參考文獻
[1] 蔡攀鰲,"公路工程學",鵬逞實業有限公司 (2003)。
[2] Huang,Y.H., “Pavement Analysis And Design”, second edition, Prentice Hall,Inc., Upper Saddle River,New Jersey, (2004).
[3] 交通部台灣區國道新建工程局,「台灣地區柔性路面厚度設計手冊研擬」(1996)。
[4] FHWA, “Distress identification manual for Long-Term Pavement Performance Program”, Publication NO. FHWA –RD-03-031, (2003).
[5] 多田宏行編著, "鋼床鈑鋪裝的設計與施工",鹿島出版會,第95~97,134~139 頁,平成2年。
[6] 楊金澤,「鋼床鈑鋪面材料特性研究」,碩士論文,中華大學土木工程學研究所,新竹 (2000)。
[7] 國立中央大學橋梁網站, http://www.cv.ncu.tw/civil/cber。
[8] 鄭芝貴,「鋼床鈑鋪設改質瀝青工法成效之評估」,碩士論文,中央大學土木工程研究所,中壢 (2001)。
[9] 道路橋示方書,同解說(I.共通篇;II.鋼橋篇),(社)日本道路協會,平成8年12月。
[10] 本州四國連絡橋之橋面舖裝相關資料調查研究報告書,(財)海洋架橋調查會。
[11] Phillips, B. L., Surfacing of Orthotropic Steel Deck Bridges, Country Roads Board of Victoria, Australia, (1973).
[12] 交通部「公路橋梁設計規範」9.2.12 之「鋼橋面鈑之上部結構」,第 270~273 頁,民國九十八年12月。
[13] Design Manual for Orthotropic Steel Plate Deck Bridges, American Institute of Steel Construction, (1963).
[14] AASHTO(2002), Standard Specifications for Highway Bridge,17th Edition. American Association of State Highway and Transportation Officials, Washington D.C.
[15] AASHTO(1994), LRFD Bridge Design Specifications. First Edition, American Association of State Highway and Transportation Officials, Washington D.C.
[16] 翁逸偉,「鋼床鈑鋪面破壞分析及較適鋪面材料之探討」,博士論文,中央大學土木工程研究所,中壢 (2011)。
[17] Huang, Y. H., “Pavement Analysis And Design”, Prentice Hall, Englewood Cliffs, N. J., (1993).
[18] Asphalt Institute(1981), “Thickness Design - Asphalt Pavement for Highways and Streets”, Ninth, Manual Series No.1 (MS-1), The Asphalt Institute.
[19] 李奇瑋,「反覆載重下鋪面之車轍損傷評估」,碩士論文,中央大學土木工程研究所,中壢 (2007)。
[20] 楊樹榮,「路基土壤之不飽和吸力特性及反覆載重下之力學行為」,博士論文,中央大學土木工程研究所,中壢 (2005)。
[21] ASTM D6433-99, “Stand Practice of Roads and Parking Lots Pavement Condition Index Surveys”, (1993).
[22] AASHTO(2008), “Mechanistic-Empirical Pavement Design Guide, Interim Edition”, American Association of State Highway and Transportation Officials, Washington D.C.
[23] Hudson, S. W., and Seeds, S.B., “Evaluation of increased pavement loading and tire pressures”, Transportation Research Record, Vol. 1207, pp. 197-206, (1988).
[24] HRB, “The AASHTO Road Test”, Report 5, Pavement Research, Special Report 61 E, Publication No. 954, Nation Academy of Seiences-Nation Research Council, (1962).
[25] AASHTO(1972), “AASHTO Interim guide for the design of flexible pavement structure”, American Association of State Highway and Transportation Officials, Washington D.C.
[26] AASHTO(1986), “AASHTO Guide for design of pavement structures”, American Association of State Highway and Transportation Officials, Washington D.C.
[27] AASHTO(1993), “AASHTO Guide for design of pavement structures”, American Association of State Highway and Transportation Officials, Washington D.C.
[28] ARA(2004),Inc., ERES Consultants Division “Guide for Mechanistic- Empirical Design of New and Rehabilitated Pavement Structures”, Chapter 3: Design of new and reconstructed flexible pavement”, NCHRP Project 1-37A, March.
[29] Leahy,R.B., “Permanent Deformation Characteristics of Asphalt Concrete”, Ph.D. Dissertation, University of Maryland, College Park, (1989).
[30] Andrei, D., Witczak, M. W., and Mirza, M. W, “Development of Revised Predictive Model for the Dynamic (Complex) Modulus of Asphalt Mixtures”. Development of the 2002 Guide for the Design of New and Rehabilitated Pavement Structures, NCHRP 1-37A. Interim Team Technical Report.Department of Civil Engineering, University of Maryland of College Park, MD, (1999).
[31] Kaloush, K. E. and Witczak, M. W., “Development of a Permanent to Elastic Strain Ratio Model for Asphalt Mixtures”, Development of the 2002 Guide for the Design of New and Rehabilitated Pavement Structures,NCHRP 1-37 A. Inter Team Technical Report,Sept, (2000).
[32] 潘承緯,「GUSS 瀝青混凝土成效特性之研究」,碩士論文,中央大學土木工程研究所,中壢 (2002)。
[33] 張廖年禧,「國道高速公路鋪設石膠泥及排水性瀝青混凝土成效之研究」,碩士論文,中央大學土木工程研究所,中壢 (2004)。
[34] Zaghloul S. and T.White, Use of Three-Dimensional, Dynamic Finite Element Program for Analysis of Flexible Pavement, TRR1388, Transportation Research Record, pp.60-69, (1992).
[35] 廖啟州,「高速公路柔性鋪面溫度分佈對鋪面破壞與服務年限之影響」,博士論文,中央大學土木工程研究所,中壢 (2009)。
[36] 林宗憲、陳偉全、蔡雅芳,「卡車軸組移動之動態分析」,臺灣公路工程,第三十卷第七期 (2004)。
[37] 宋侑玲,「重載交通荷重對路面損壞分析模式之建立」,博士論文,中央大學土木工程研究所,中壢(2003)。
[38] 廖小媛,「以力學-經驗準則探討溫度與重車載重對高速公路柔性鋪面之影響」,碩士論文,中央大學土木工程研究所,中壢(2009)。
[39] PCA, Thickness Design For Concrete Highway and Street Pavements, Portland Cement Association, (1984).
[40] Jun Murakoshi1, Naoki Yanadori2, and Hironori Ishii3, “Reasearch On
Steel Fiber Reinforced Concrete Pavement For Orthotropic Steel Deck As A Countermeasure For Fatigue”, (2007-2008).
[41] ASTM D6433-99, “Standard Practice of Roads and Parking Lots Pavement Condition Index Surveys”, (1999).
[42] 郭廷宇,「溫度效應下高速公路柔性鋪面車轍損傷模擬」,碩士論文,中央大學土木工程研究所,中壢 (2011)。
[43] Shmuel L. Weissman, “The Influence of Tire-Pavement Contact Stress Distribution on the Development of Distress Mechanisms in Pavements”, Symplectic Engineering Corporation 1350 Solano Ave. #26, Albany, CA 94706 USA.
[44] Sameh Zaghloul and Thomas White, “Use of Three-Dimensional, Dynamic Finite Element Program for Analysis of Flexible Pavement”, Transportation Research Record 1388.
[45] T. Medani, M.Huurman & A.A.A.Molenaar, “Characterisation of Some Candidate Surfacing Materials for Orthotropic Steel Bridge Decks”, Department of Road and Railway Engineering, Faculty of Civil Engineering and Geo- Sciences, Delft University of Technology, the Netherlands (2004).
[46] 蔡明倫,「流動性瀝青混凝土(Guss)之工程性質」,碩士論文,成功大學土木工程研究所,台南 (2009)。