| 研究生: |
何政恩 Cheng-En Ho |
|---|---|
| 論文名稱: |
先進半導體封裝技術中之金脆效應及其有效抑制方法 THE GOLD-EMBRITTLEMENT PHENOMENON IN ADVANCED ELECTRONIC PACKAGES ANDITS PREVENTION |
| 指導教授: |
高振宏
C. R. Kao |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 226 |
| 中文關鍵詞: | 銲料 、封裝 、金脆 |
| 外文關鍵詞: | package, gold-embrittlement, solder |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
ABSTRACT
Solder joints are the most vulnerable links in microelectronic devices. In fact, failure in solder joints is the most common root cause responsible for malfunction in electronic products. Therefore, improving the solder joints reliability is one of the most important tasks for electronic industry.
Gold-bearing finishes, such as the Au/Ni bi-layer, are extensively used in the electronic devices to protect the solderable pads against oxidation that can degrade the reliability of solder joints. After soldering, the surfaces Au will get into the solder and form many Au-bearing intermetallic particles, (Au1-xNix)Sn4. Ductility loss of the solder due to the presence of these brittle (Au1-xNix)Sn4 particles in the matrix is known as the “gold-embrittlement” [BAN1, DAE, DUC, ENW, FOS, GLA2, VIA, WIL]. Typically, the “gold-embrittlement” phenomenon occurres in the solder joint as the gold concentration is in excess of 3 wt.%. However, recent studies [BAN2, MEI2, MIY] reported that a different “gold-embrittlement” phenomenon could occur at a nominal Au concentration, which was much less than 3 wt.%. Instead of weakening the bulk solder, it deteriorated the solder/pad interface by forming a continuous (Au1-xNix)Sn4 layer at the interface. This second phenomenon has become a critical issue in the electronic industry for many years. The objective of this thesis is to probe into the mechanism for this phenomenon and to find approaches to inhibit this phenomenon.
In this thesis, it is established that the (Au1-xNix)Sn4 was based on the AuSn4 structure. It is proposed that the driving force for (Au1-xNix)Sn4 to come back to the interface is to seek Ni to become more Ni-rich so that the Gibbs free energy can become smaller. Furthermore, this thesis suggests three techniques to avoid the formation of a brittle (Au1-xNix)Sn4 layer at the interface. The first technique is to use a thinner gold in the surface finish so that the amounts of (Au1-xNix)Sn4 formed is smaller. The second is to saturate the AuSn4 with added Ni so that AuSn4 does not have to go back to the interface for Ni. The third is to avoid the formation of (Au1-xNix)Sn4 by adding a specific amount of Cu (0.5 wt.%) inside the joint. In fact, the doped Cu will form a more stable Cu6Sn5-based phase and force the Au atoms to dissolve into and trap by it, instead of forming the undesirable (Au1-xNix)Sn4.
In the Appendix of this thesis, the strong effect of Cu on the interfacial reaction will be reported. We found that the structure of the intermetallic compound formed was very sensitive to a slight variation in the Cu concentration of solder joints. When the solder joints are Cu-free, the intermetallic compound had the crystal structure based on Ni3Sn4. With increasing Cu concentration, the reaction products changed from a Ni3Sn4-based compound into a Ni3Sn4-based compound plus a Cu6Sn5-based compound. When the Cu concentration increased even more, the reaction product became a Cu6Sn5-based compound. More importantly, it was found that the formation of Cu6Sn5-based compound at the interface could result in a lower Ni consumption rate. This reduction in Ni consumption suggests that a thinner Ni layer can be used with Cu-doped solder joints. Rationalizations for these effects were presented in the main text of Appendix A.
REFERENCES
[ANH] S. Anhöck, H. Oppermann, C. Kallmayer, R. Aschenbrenner, L. Thomas, and H. Reichl, 1998 IEEE/CPMT Berlin Intl Manufacturing Tech. Symp. Proceeding, p.156, 1998.
[ASC] A. Ascoli, J. Inst. Metals, 89, p.218, 1961.
[BAD] W. G. Bader, Welding Research Supplement, 28, p.551s, 1969.
[BAK] H. Baker (ed.), ASM Handbook v.3: Alloy Phase Diagrams, ASM, Materials Park, OH, 1992.
[BAL] C. Baldwin and T. E. Such, Tran. Institute Metal Finish., 46, p.73, 1968.
[BAN1] S. Banks, Electronic Packaging & Production, p.69, June 1995.
[BAN2] K. Banerji, R. F. Darveaux, P. K. Liaw, R. Viswanathan, K. L. Murty, E. P. Simonen, and D. Frear, Microstructures and Mechanical Properties of Aging Materials, TMS, Warrendale, Pa., p.431, 1993.
[BLA] H. D. Blair, T. Y. Pan, and J. M. Nicholson, Proc. 48th IEEE Electron. Comp. Tech. Conf., p.259, 1998.
[BOL] S. C. Bolton, A. J. Mawer, and D. Mammo, Intl. J. Microcircuit and Electronic Packaging, 18, p.109, 1995.
[BRA] E. Bradley and K. Banerji, Proc. 45th IEEE Electron. Comp. Tech. Conf., p.1028, 1996.
[BUL] R. A. Bulwith and C. A. Mackay, Weld. J., 164, p.86s, 1987.
[CAN] C. T. Candland and H. B. Vanfleet, Phys. Rev., B7, p.575, 1973.
[CHE] C. Chen, C. E. Ho, A. H. Lin, G. L. Luo, and C. R. Kao, J. Electron. Maters., 29, p.1200, 2000.
[DAE] D. H. Daebler, SMT, October 1991.
[DUC] R. Duckett and M. L. Ackroyd, Electroplat. Met. Finish., 29, p.13, 1976.
[DYN] B. F. Dyson, J. Appl. Phys., 37, p.2375, 1966.
[ENW] S. Enwright, Electronic Packaging & Production, p.68, June 1998.
[FOS] F. G. Foster, ASTM STP 319, p.13, 1962.
[FRE] D. R. Frear, J. W. Jang, J. K. Lin, and C. Zhang, JOM, 53, p.28, 2001.
[FUR] S. Furuseth and H. Fjellvag, ACTA Chemica Scandinavica, Series A: Physical and Inorganic Chemistry, 40A, p.695, 1986.
[GAN] A. Ganguluee, G. C. Das, and M. B. Bever, Metallurgical Transactions, 4, p.2063, 1973.
[GLA1] J. Glazer, Inter. Mater. Rev., 40, p.65, 1995.
[GLA2] J. Glazer, Journal of SMT, October 1991.
[GUR] D. Gur and M. Bamberger, Acta Mater., 46, p.4917, 1998.
[HAR] C. A. Harper (ed.), Electronic Packaging and Interconnection Handbook, McGraw-Hill, New York, 1991.
[HEI] H. Heinzel and K. E. Saeger, Gold Bull., 9, p.7, 1976.
[HO1] C. E. Ho, Y. M. Chen, and C. R. Kao, J. Electron. Maters., 28, p.1231, 1999.
[HO2] C. E. Ho, S. Y. Tsai, and C. R. Kao, IEEE Transactions on Advanced Packaging, 24, p.493, 2002.
[HRI] V. F. Hribar, J. L. Bauer, and T. P. O’Donnell, Third Int. SAMPE Electronics Conf., p.1187, 1989.
[HUM1] G. Humpston and D. M. Jacobson, Principles of Soldering and Brazing, ASM, Materials Park, OH, 1996.
[HUM2] G. Humptson and D. L. Davies, Mater. Sci. and Tech., 1, p.433, 1985.
[HUN1] S. C. Hung, P. J. Zheng, S. C. Lee, Proc. 24th IEMT, p.23, 1999.
[HUN2] B. Huntington and C. K. Hu, Materials Science Forum, 1, p.29, 1984.
[IPC] IPC Roadmap for Assembly of Lead-Free Electronics, 4th draft, IPC, Northbrook, IL, June 2000.
[JAC] D. M. Jacobson and J. Jumpston, Gold Bull., 22, p.9, 1989.
[KAN] S. K. Kang, R. S. Rai, and S. Purushothaman, J. Electron. Maters., 25, p.1113, 1996.
[KAY] P. J. Kay and C. A. Mackay, Trans. Inst. Met. Finish., 154, p.68, 1976.
[KIM1] P. G. Kim and K. N. Tu, Maters. Chem. and Phys., 53, p.165, 1998.
[KIM2] P. G. Kim and K. N. Tu, J. Appl. Phys., 80, p.3822, 1996.
[KOR] T. M. Korhonen, P. Su, S. J. Hong, M. A. Korhonen, and C.-Y. Li, J. Electron. Maters., 29, p.1194, 2000.
[KRA] P. A. Kramer, J. Glazer, and J. W. Morris, Jr., Metall. and Mater. Trans., 25A, p.1249, 1994.
[KUB] R. Kubiak, J. Less-Common Met., 80, p.53, 1981.
[KUL] K. Kulojärvi, V. Vuorinen, and J. K. Kivilahti, Microelectronics International, 15, issue 2, p.20, 1998.
[LAU] J. K. Lau (ed.), Ball Grid Array Technology, McGraw-Hill, New York, 1995.
[LIU] C. M. Liu, M. S. Thesis, National Central University, Chungli City, Taiwan, 2000.
[LEE1] N. C. Lee, Proc. of Nepcon West, Anaheim, CA, February 1997.
[LEE2] J. H. Lee, J. H. Park, Y. H. Lee, and Y. S. Kim, J. Mater. Res., 16, p.1249, 2001.
[LEE3] J. H. Lee, J. H. Park, D. H. Shin, Y. H. Lee, and Y. S. Kim, J. Electron. Maters., 30, p.1138, 2001.
[LIN1] K. L. Lin and C. J. Chen, J. Mater. Sci. Materials in Electronics, 7, p.397, 1996.
[LIN2] C. H. Lin, M.S. Thesis, National Tsing-Hua University, Hsing-Chu, Taiwan, 2001.
[MEI1] Z. Mei, P. Callery, D. Fisher, F. Hua, and J. Glazer, Adv. Electronic Pack., 2, p.1543, 1997.
[MEI2] Z. Mei, M. Kaufmann, A. Eslambolchi, and P. Johnson, Proc. 48th IEEE Electron. Comp. Tech. Conf., p.952, 1998.
[MEI3] Z. Mei, P. Johnson, M. Kaufmann, and A. Eslambolchi, Proc. 49th IEEE Electron. Comp. Tech. Conf., p.125, 1999.
[MEI4] S. N. Mei, J. Shi, and H. B. Huntington, J. Appl. Phys., 62, p.444, 1987.
[MIN1] A. M. Minor and J. W. Morris, Jr., Metall. and Mater. Trans., A31, p.798, 2000.
[MIN2] A. M. Minor and J. W. Morris, Jr., J. Electron. Maters., 29, p.1170, 2000.
[MIY] T. Miyazaki and K. Terashima, Proc. 19th IEMT, p.333, 1994.
[MOO] K.-W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A. Handwerker, J. Electron. Maters., 29, p. 1122, 2000.
[MUL] W. A. Mulholland and D. L. Willyard, Welding J. Res. Suppl., 54, p.466s, 1974.
[NCM] Lead-Free Solder Project Final Report, NCMS Report 0401RE96, National Center for Manufacturing Sciences, 3025 Boardwalk, Ann Arbor, Michigan, 1997.
[NEM] Meeting Report, Workshop on Modeling and Data Needs for Lead-Free Solders; National Electronics Manufacturing Initiative (NEMI); New Orleans, LA, February 15 2001.
[NOW] H. Nowotny and K. Schubert, Zeitschrift Fuer Metallkunde, 37, p. 23, 1946.
[PUT] K. Puttlitz, IEEE Trans. Compon. Hybr. & Manufact. Tech. 13, p.647, 1990.
[PHI] J. Philibbert, S. J. Rothman, and D. Lazarus, Atom Movements: Diffusion and Mass Transport in Solids, Avenue du Hoggar and Zone Industrielle de Courtaboeuf, Les Ulis Cedex, 1988.
[RAH] A. Rahn (ed.), The Basics of Soldering, John Wiely & Sons, New York, 1993.
[SAL] G. Salvago and P. L. Cavallotti, Plating, 59, p.665, 1972.
[SCH] K. Schubert, H. Breimer, and R. Gohle, Z. Metallkde., 50, p.146, 1959.
[SHE] P. Shewmon, Diffusion in Solids (2nd edition), McGraw-Hill, 1963.
[SHI1] L. C. Shiau, C. E. Ho, and C. R. Kao, Proceedings of the International Conference on Advances in Packaging (Eds. S. Wong, J. HL Pang, Z. Wang, and A. Lu) Gintic, Singapore, p.99, 2001.
[SHI2] B. L. Shiau, M. S. Thesis, National Central University, Chungli City, Taiwan, 2000.
[TAO] W. H. Tao, C. Chen, C. E. Ho, W. T. Chen, and C. R. Kao, Chem. of Maters., 13, p.1051, 2001.
[THW] C. J. Thwaites, Electroplat. Met. Finish., 26, p.10, 1973.
[UEN] K. Uenishi, T. Saeki, Y. Kohara, K. F. Kobayashi, I. Shoji, M. Nishiura, and M. Yamamoto, Mater. Trans., 42, p.756, 2001.
[TU] K. N. Tu and K. Zeng, Materials Science and Engineering, R34, p.1, 2001.
[VAN] J. E. A. M. Van Den Meerakker, J. Appl. Electronchem., 11, p.395 1981.
[VIA] P. T. Vianco, Circuit World, 25/1, p.6, 1998.
[VIN] J. H. Vincent and G. Humpston, GEC Journal of Research, 11, p.76, 1994.
[WAR] W. K. Warburton and D. Turnbull, Diffusion in Solids-Recent Developments, ed. A. S. Nowick and J. J. Burton, Academic Press, NY, p.171, 1975.
[WAS1] R. J. Wassink, Soldering in Eelectronics, Electrochemical Pub. Ltd., p.99, 1984.
[WAS2] R. J. Wassink, Soldering in Eelectronics, 2nd ed., Electro-chemical Pub. Ltd., p.523, 1989.
[WIL] R. N. Wild, NEPCON, p.198, 1968.
[YOS] F. G. Yost, Gold Bull., 10, p.94, 1977.
[YOU] M. Yousuf, P. C. Sahu, H. K. Rajagopalan, and K. G. Rajan, J. Phys. F: Metal Physics, 16F, p.373, 1986.
[ZRI2] A. Zribi, R. R. Chromik, R. Presthus, J. Clum, K. Teed, L. Zavalij, J. DeVita, J. Tova, and E. J. Cotts, Proc. 49th IEEE Electron. Comp. Tech. Conf., p.451, 1999.
[ZRI2] A. Zribi, R. R. Chromik, R. Presthus, K. Teed, L. Zavalij, J. DeVita, J. Tova, E. J. Cotts, J. Clum, R. Erich, A. Primavera, G. Westby, R. J. Coyle, and G. M. Wenger, IEEE Electron. Comp. Tech., 23, p.383, 2000.
[ZAK] E. Zakel, IEEE Transactions on Components, Packaging and Manufacturing Technology, 17, p.569, 1994.
[白蓉生] 白蓉生, 電路板會刊, 第15期, p.4, 2002。
[彭錢塘] 彭錢塘, 電路板會刊, 第12期, p.75, 2001。
[杜經寧] 杜經寧, 高級電子元件材料研討會報告, 國立交通大學材料科學與工程學系, 12月14日, 2001。