跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張衛忠
Wei-Zhung Chang
論文名稱: 高靈敏度溴化亞甲基之分光光譜與溴仿光解之放射光譜研究
High Resolution Dispersed Fluorescence Spectra of Bromomethylene and Emission Spectra of Photodissociation of Bromoform
指導教授: 張伯琛
Bor-Chen Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 93
語文別: 中文
論文頁數: 96
中文關鍵詞: 螢光光譜溴化亞甲基溴仿光解
外文關鍵詞: Photodissociation of Bromoform, Bromomethylene, Dispersed Fluorescence Spectra
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 溴化亞甲基分子(monochloromethylene, HCBr)為有機、大氣及材料化學中相當重要的反應中間物。但是先前的文獻受限於偵測器觀測範圍及光譜的訊雜比不良,所以對於其基態振動資訊的瞭解仍不夠完整,而且無法由實驗結果精確地得知單重態(X1A'')與三重態(a3A")之能階差(singlet-triplet energy gap, ΔEST)值。在本實驗中利用高壓直流放電技術結合超音速自由噴射分子束裝置,並且利用增強式電荷偶極裝置(ICCD),取得了高靈敏度的HCBr/DCBr自由基的螢光分光光譜。在實驗中得到了HCBr/DCBr更多的基態振動能階資訊,首次得到C-H/C-D的振動頻率,以及首次觀測到放射至三重態的譜線。也確定了HCBr/DCBr三個振動量子態的基本頻率。藉由分析C-Br的振動頻率,C-Br在基態的鍵能為較弱的,且其非簡諧常數較大。
    實驗的另外一部份為光解溴仿之放光光譜,紫外光光解溴仿的反應機構尚未確定。在本實驗中利用266 nm的雷射光來光解溴仿,藉由其放光分光光譜,來確定產物為何,並且推測其反應機構。藉由分析以266 nm光解CHBr3/CDBr3取得的放光光譜,可以發現光解反應的產物有:CH, Br, Br2, C2等。C2的來源推測為兩分子的激發態CH碰撞所反應,或是CH和其他含碳的物種碰撞所得的。並且在實驗中推測溴仿以266 nm光解時的反應機構。


    New dispersed fluorescence spectra following the excitation of several HCBr and DCBr A-X vibronic bands were successfully obtained in a supersonic free jet expansion with an intensified charge-coupled device (ICCD) detector. These dispersed fluorescence spectra show signal-to-noise ratios up to 100 and reveal the complete and detailed vibrational structure of the ground state including the previously unreported C-H/C-D stretch vibrational mode. The emission bands to the background triplet state levels in DCBr were also observed for the first time and this confirms the signlet-triplet energy gap to be 2061 cm-1 (5.89 kcal/mol) in DCBr. Emission spectra following the 266nm multiphoton photolysis of bromoform (CHBr3/CDBr3) were successfully obtained in a supersonic free jet expansion with an ICCD detector. The emission bands of Br, Br2, CH, and C2 were observed. In comparison with the enthalpies of formation of these species, the mechanism of 266nm multiphoton photolysis of bromoform is predicted.

    摘要 I 謝致 II 目錄 III 表目錄 V 圖目錄 VI 第一章 緒論 1-1 研究方向 1 1-2 溴化亞甲基之相關研究 3 1-3 溴仿光解之相關研究 6 第二章 實驗 2-1 實驗目標 9 2-2 光譜技術簡介 10 2-3 超音速自由噴射裝置 11 2-4 自由基產生技術 16 2-5 增強式電荷偶合裝置偵測器 19 2-6 高壓直流放電搭配超音速自由噴射分子束之雷射誘導螢光激發光譜實驗裝置 23 2-7 高壓直流放電搭配超音速自由噴射分子束之螢光分光光譜 27 2-8 雷射光解技術搭配超音速自由噴射分子束之螢光分光光譜 32 第三章 溴化亞甲基之電子光譜 3-1 研究目標 34 3-2 HCBr之分光光譜 34 3-3 DCBr之分光光譜 38 第四章 溴仿光解之放射光譜 4-1 研究目標 44 4-2 光解溴仿(CHBr3/CDBr3)之放射光譜 44 4-3 光解溴仿反應機構的探討 46 第五章 結論 52 參考資料 95

    1 L. A. Barrie, J. W. Bottenheim, R.C. Schnell, P.J. Cruzten,and R. A. Rasmussen, Nature. 334, 138 (1988).
    2 G. Herzberg and J. W. C. Johns, Proc. R. Soc. Ser. A 295, 107 (1966).
    3 A. J. Marr and T. J. Sears, Mol. Phys. 97, 185 (1999).
    4 B.-C. Chang, M. L. Costen, A. J. Marr, G. Ritchie, G. E. Hall, and T. J. Sears, J. Mol. Spectrosc. 202, 131 (2000) and references therein.
    5 M.-L. Liu, C.-L. Lee, A. Bezant, G. Tarczay, R. J. Clark, T. A. Miller, and B.-C. Chang, Phys. Chem. Chem. Phys. 5, 1352 (2003).
    6 C.-L. Lee, M.-L. Liu, and B.-C. Chang, Phys. Chem. Chem. Phys. 5, 3859 (2003).
    7 B.-C. Chang, J. Guss, and T. J. Sears, J. Mol. Spectrosc. 219, 136 (2003).
    8 S. Xu, K. A. Beran and M. D. Harmony, J. Phys. Chem. 98 2742 (1994).
    9 B.-C. Chang, M. L. Costen, A. J. Marr, G. Ritchie, G. E. Hall, and T. J. Sears, J. Mol. Spectrosc. 202, 131 (2000) and references therein.
    10 A. J. Marr, S.W. North, T. J. Sears, L. Ruslen, and R. F. Field, J. Mol. Spectrosc. 188, 6877 (1998).
    11 H.-G. Yu, T. Gonzalez-Lezana, A. J. Marr, J. T. Muckerman, and T. J. Sears, J. Chem. Phys. 115, 5433 (2001). 95
    12 T.-C. Tsai, C.-W. Chen, and B.-C. Chang, J. Chem. Phys. 115, 766 (2001).
    13 C.-W. Chen, T.-C. Tsai, and B.-C. Chang, J. Mol. Spectrosc. 209, 254 (2001).
    14 D. A. Lichtin, M. R.Berman, and M. C. Lin, Chem. Phys. Lett. 108, 18 (1984).
    15 C. Chen, Q. Ran, S. Yu, and X. Ma, Chem. Phys. Lett. 203, 307 (1993).
    16 W.-L. Liu and B.-C. Chang, J. Chinese. Chem. Soc. 48, 613 (2001).
    17 D. Xu, J. S. Francisco, J. Huang, and W. M. Jackson, J. Chem. Phys. 117, 2578 (2002) and references therein.
    18 T. A. Miller, Science. 223, 545 (1984).
    19 A. J. Marr and T. J. Sears, J. Mol. Spectrosc. 195, 367 (1999).
    20 B. J. Petro, E. D. Tweeten, and R. W. Quandt, J. Phys. Chem. A, 108, 384 (2004).
    21 J. Lindner, K. Ermisch, and R. Wilhelm, Chem. Phys. 238, 329 (1998).
    22 H.-Y. Huang, W.-T. Chuang, R. C. Sharma, C.-Y. Hsu, K.-C. Lin, and C.-H. Hu, J. Chem. Phys. 121, 5232 (2004).
    23 P. Zou, J. Shu, T. J. Sears, G. E. Hall, and S. W. North, J. Phys. Chem. A, 108, 1482 (2004).

    QR CODE
    :::