| 研究生: |
周廷韋 Ting-Wei Chou |
|---|---|
| 論文名稱: |
以離心模型試驗模擬基樁反覆抗壓及抗拉拔之行為 Bearing behavior of pile under axial cyclic loading in centrifuge tests |
| 指導教授: |
黃俊鴻
Jin-Hung Hwang 李崇正 Chung-Jung Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 193 |
| 中文關鍵詞: | 離心模型試驗 、反覆荷載 、阻尼比 |
| 外文關鍵詞: | cyclic loading, centrifuge, damping ratio, compressive-tensile, tensile-compressive |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用三種不同樁徑比(L/D=8.4, 14.3, 19)之模型基樁,其基樁長度皆相等,在1g狀態下進行貫樁,其貫入深度為19cm。接著使離心機繞到80g時,進行基樁受反覆循環荷載試驗,探討現地原型尺寸基樁受相同壓、拉循環載重下樁土間反應行為。
本試驗施加荷載方式分為兩種:(1)先施加壓力,解壓後再施以拉拔力(2)先施加拉拔力,解除拉拔後,再施以壓力。過程中利用複動式氣壓缸控制荷載,進行五次循環荷載之加載卸載。試驗所得初步結果顯示,離心加速度增加過程中土壤沉陷量大於樁頭沉陷量,此時樁身產生負摩擦力影響,樁身β值隨著長徑比變小而增加。將達到目標g數80g所量測到之軸力數據歸零後,再進行後續循環荷載試驗。結果顯示樁身勁度會隨著循環次數越多而增加,阻尼比則隨著循環次數增加而減少。在基樁解除拉拔力後樁底周圍土壤會對基樁產生一束制力影響,使基樁底部承受拉力,爾後增加壓荷載時樁底拉力則隨之減少。
A series of centrifuge modeling tests was conducted in the study to investigate the behavior of piles subjected to two types of cyclic axial loadings, including the compressive-tensile and tensile-compressive modes. Three kinds of piles were selected with different slender ratios but with the same embedded length. The model pile was slowly penetrated into the dry sand at 1g condition. Then, the tested model was set on the platform of centrifuge and subjected to an artificial gravity of 80g to simulate a full-scale prototype pile. Subsequently, five cycles of axial cyclic loadings were applied on pile head by a double active air cylinder. From the test results, it can be found that the stiffness of pile increases with increasing number of cyclic loading. The damping ratio increases with decreasing slender ratio. Besides, a tensile force occurs near the bottom of the pile resulting from the release of the tensile force at the pile head.
參考文獻
1. 郭致均,「以離心機模型試驗模擬基樁抗壓及抗拔樁行為」,碩士論文,國立中央大學土木工程學系,中壢(2008)。
2. 傅哲賢,「基樁抗壓與抗拉極限承載力之差異」,碩士論文,國立中央大學土木工程學系,中壢(2006)。
3. 江國輝,「通隧引致鄰近基樁之荷重傳遞行為」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
4. 王韋舜,「基樁抗壓與抗拉極限承載力之差異」,碩士論文,國立中央大學土木工程學系,中壢(2004)。
5. 內政部營建署,「建築物基礎構造設計規範」,中華民國大地工程學會,台北(2001)。
6. 茶古文雄,「建築設計における杭の引拔き抵抗力機構の考え方」,基礎工,Vol. 22, No.7, pp.26-32 (1994)。
7. American Society for Testing Materials, “Standard Test Method for Testing Individual Piles Under Static Axial Tensile Load” Annual Book of Standard, ASTM D3689-90, pp.530-540 (1994).
8. American Society for Testing Materials, “Standard Test Method for Piles Under Static Axial Compressive Load” Annual Book of Standard, ASTM D1143-81, pp.195-205 (1994).
9. Amira, M., Yokoyama, Y., and Imaizumi, S., “Friction Capacity of Axially Loaded Model Pile in Sand” Soils and Foundations, Vol.35, No.1, pp.75-82 (1995).
10. Alawneh, A.S., “Modelling Load-Displacement Response of Driven Pile in Cohesionless Soils under Tensile Loading” Computers and Geotechnics, Vol. 32, No.8, pp. 578-586 (2005).
11. Chattopadhyay, B. C., and Pise, P. J., “Uplift Capacity of Piles in Sand” Journal of Geotechnical Engineering, Vol.112, No.9, pp.888-904 (1986).
12. Das, B. M., and Seeley, G. R. “Uplift Capacity of Buried Model Piles in Sand” Journal of the Geotechnical Engineering Division, Vol.101, No.10, pp.1091-1094 (1975).
13. Dickin, E.A., and Lyndon, A., “Pile Uplift and Pile Cap Interaction Studies in Sand” Proceedings of the 1994 International Conference on Centrifuge, pp.443-447 (1994).
14. El Naggar, M. H. and Wei, J. Q., “Cyclic Response of Axially Loaded Tapered Piles,” Geotechnical Testing Journal, Vol.23, No.1, pp. 100-115 (2000)
15. Fioravante, V., Jamiolkowski, M., and Pedroni, S., "Modelling the Behaviour of Piles in Sand Subjected to Axial Load” Proceedings of the 1994 International Conference on Centrifuge, pp.455-460 (1994).
16. Lehane, B. M., Jardine, R. J., Bond, A.J., and Frank, R., “Mechanisms of Shaft Friction in Sand from Instrumented Pile Tests” Journal of Geotechnical Engineering, Vol.119, No.1, pp.19-35 (1993).
17. Ismael, N. F., Member, “Analysis of Load Tests on Piles Driven Through Calcareous Desert Sands” Journal of Geotechnical and Geoenvironmental Engineering, Vol.125, No.12, pp.905-908 (1999).
18. Ismael, N. F., and Klym, T. W., “Uplift and Bearing Capacity of Short Piles in Sand” Journal of the Geotechnical Engineering Division, ASCE, Vol.105, No.5, pp.579-594 (1979).
19. Levacher, D. R., and Sieffert, J. G., “Tests on Model Tension Piles” Journal of Geotechnical Engineering, Vol.11, No.12, pp. 735-748 (1984).
20. Meyerhof, G. G., and Adams, J. I., “The Ultimate Uplift Capacity of Foundation” Canadian Geotechnical Journal, Vol.5, No.4, pp.225-244 (1968).
21. Miyake, M., Wada, M., Satoh, T. and Katoh, Y., “Pullout Resistance of Steel Pipe Piles in Improved Ground” Proceedings of the 1994 International Conference on Centrifuge, pp.431-435 (1994).
22. Nicola, A.D., and Randolph, M.F., “Tensile and Compressive Shaft Capacity of Piles in Sand” Journal of Geotechnical Engineering, Vol. 119, No. 12, pp. 1952-1973 (1993).
23. Vesic, A. S., “Bearing Capacity of Deep Foundations in Sand” Highway Research Board Record, No.39, pp.112-153 (1963).
24. Poulos, H. G., “Cyclic Axial Loading Analysis of Piles in Sand,” Journal of Geotechnical Engineering, Vol. 117, No. 9, pp. 1435-1440.
25. Yet, N.S., Leung, C.F., and Lee, F.H., “Behaviour of Axially Loaded Piles in Sand” Proceedings of the 1994 International Conference on Centrifuge, pp.461-467 (1994).
26. Zhang, L., and Hu, T., “Modeling of Residual Stresses of Large Piles in Centrifuge” Proceedings of the International Conference on Centrifuge 91, pp.237-243 (1991).