跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許乃偉
Nau-Wei Hsu
論文名稱: 半極性氮化銦鎵氮化鎵發光二極體特性分析
Luminescence investigation of semi-polar {1-101} and {11-22}InGaN/GaN light emitting diodes
指導教授: 綦振瀛
Jen-Inn Chyi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 64
中文關鍵詞: 發光二極體氮化鎵半極性
外文關鍵詞: Light Emitting Diode, GaN, Semi-polar
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑒於目前成長於 (0001) 極性晶面之氮化鎵材料發光二極體,因為壓電場產生的量子侷限史塔克效應 ( quantum confined Stark effect, QCSE )而影響量子井的發光效率,非極性或半極性晶面發光二極體已成了眾人鑽研的課題。在本論文中,我們利用條狀側向磊晶成長方式在(0001)藍寶石基板上成長半極性發光二極體結構,並且成功製備半極性發光二極體。此法不但能利用低成本的藍寶石基板獲得半極性發光二極體,同時亦可利用側向磊晶成長機制有效的降低缺陷密度,提高內部量子效率。
    在本研究中,我們分別製備了{1-101}晶面及{11-22}晶面半極性InGaN/GaN多層量子井及發光二極體,希望比較不同半極性晶面量子井中的壓電性電場。由光激發光譜及電激發光譜分析發現,與(0001)晶面相較,{1-101}和{11-22}半極性晶面發光二極體光譜波峰隨激發強度的變化都是較少的,顯示{1-101}和{11-22}量子井中的內建電場相較於(0001)確實是比較小。實驗顯示在高電流操作下,{11-22}晶面半極性發光二極體的發光效率,顯示其未來是頗具發展淺力的。


    Currently commercially available GaN light-emitting diodes (LEDs) are fabricated on the strongly polarized c-plan wurtzite crystal. The internal quantum efficiency has been limited by the Quantum Confined Stark Effect. The growth of non-polar and semi-polar III–nitride materials has therefore attracted great attention in recent years. In this work, stripe patterns with semipolar side facets are obtained by lateral overgrowth on c-plane sapphire substrates using metal-organic chemical vapor deposition. Semi-polar LEDs are also demonstrated. This selective overgrowth technique offers the advantages of reduced dislocations as well as lower internal piezoelectric field.
    InGaN/GaN multiple quantum well LEDs on the semi-polar {1-101} and {11-22} side facets are characterized by photoluminescence (PL) and electroluminescence (EL). Compared to the c-plane LEDs, the luminescence of both semi-polar LEDs shows less dependence on injecting current or exaction power, indicating their lower internal electric field. Besides, the {11-22} semi-polar LEDs exhibit higher internal quantum efficiency under high current injection, manifesting itself a good candidate for high efficiency LEDs.

    第一章 前言1 §1.1 研究背景與動機1 §1.2 內容概要5 第二章 實驗方法與步驟7 §2.1 前言 7 §2.2 一維條紋圖案化基板製備與磊晶成長8 §2.3 半極性氮化鎵/氮化銦鎵多層量子井發光二極體之結構分析11 第三章 半極性氮化鎵/氮化銦鎵多層量子井發光二極體之光激發光譜分析16 §3.1 前言 16 §3.2 電子束激發光譜分析19 §3.3 量子井之壓電場之定性分析25 §3.4 本章結論31 第四章 半極性氮化鎵/氮化銦鎵多層量子井發光二極體之電性及電激發光譜分析32 §4.1 半極性氮化鎵/氮化銦鎵多層量子井發光二極體之製作32 §4.2-1 半極性氮化鎵/氮化銦鎵多層量子井發光二極體之光電特性39 §4.2-2 利用二氧化矽頓化層抑制元件漏電流47 §4.3 發光二極體之壓電場之定性分析56 §4.4 本章結論58 第五章 結論59 參考文獻61

    [1] Yoshida, S. (Electrotechnical Lab, Ibaraki, Jpn); Misawa, S.; Gonda, S, v 1, n 2, Apr-Jun, 1982, p 250-253
    [2]Sawaki, N.; Akasaki, I.; Toyoda, Y.Applied Physics Letters,
    v48,n5,1986, p 353-355
    [3] Nakamura, Shuji (Nichia Chemical Industries, Ltd); Senoh, Masayuki; Mukai, Takashi, v 30, n 10A, Oct 1, 1991, p L1708-L1711
    [4] Ohshita, Yoshio; Sawaki, Nobuhiko; Akasaki, Isamu ,Solid State Communications, v 57, n 6, Feb, 1986, p 405-409
    [5] Nakamura, Shuji (Nichia Chemical Industries, Ltd); Senoh, Masayuki; Mukai, Takashi, Japanese Journal of Applied Physics, Part 2: Letters, v 32, n 1A-B, Jan 15, 1993, p L8-L11
    [6] Y. P. Varshni, Physica 34,149 (1967)
    [7] S.Keller at.al.J.Cryatal Growth 195.258(1999)
    [8] A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. DenBaars, S.Nakamura, and U. K. Mishra, Appl. Phys. Lett., 85, 5143 (2004)
    [9] A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. Denbaars, S.Nakamura and U. K. Mishra, Jpn. J. Appl. Phys., Part 2 44, L173 (2005)
    [8] A. Tyagi, H. Zhong, M. Iza, S. P. DenBaars, and S. Nakamura, Jpn. J.Appl. Phys., 46, L129 (2007)
    [10] T. Onuma, A. Chakraborty, B. A. Haskell, S. Keller, S. P. DenBaars, J. S. Speck, S. Nakamura, and U. K. Mishra, APPL. PHYS.LETT 86, 151918 (2005)
    [11] Thomas Wunderer,Peter Brückner, Joachim Hertkorn, and Ferdinand Scholz, APPL.PHYSICS.LETT 90, 171123 (2007)
    [12] Anurag TYAGI,Hong ZHONG, Natalie N. FELLOWS, Michael IZA,James S. SPECK,Steven P. DENBAARS, and Shuji NAKAMURA, J J AP,45,739(2006)
    [12] Thomas Wunderer, Peter Brückner, Barbara Neubert, and Ferdinand Scholz, APPL PHYS LETT 89, 041121 (2006)
    [13] L.-H. Peng, C.-W. Shih, C.-M. Lai, C.-C. Chuo and J.-I. Chyi, Appl.Phys. Lett. 82, 24268(2003).
    [14] Y. Honda, Y. Iyechika, T. Maeda, H. Miyakei and K. Hiramatsui, Jpn. J.Appl. Phys. Vol. 40 (2001) pp. L309–L312
    [15] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, J. Appl. Phys. Vol.85 No. 6 p3222 (1999).
    [16] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano and I. Akasaki, Jpn. J. Appl. Phys.36,L382 (1997).
    [17] J. L. Sanchez-Rojas, J. A. Garrido, and E. Muñoz, Phys. Rev. Lett. Vol. 61 No. 4 p2773 (2000)
    [18] Y. Honda, Y. Iyechika, T. Maeda, H. Miyakei and K. Hiramatsui, Jpn. J.Appl. Phys. Vol. 40 (2001) pp. L309–L312
    [19] D. S. Li, H. Chen, H. B. Yu, H. Q. Jia, Q. Huang, and J. M. Zhou, J.Appl. Phys., 96, 1111(2004)
    [20] X.A. Cao, J.A. Teetsov, F. Shahedipour-Sandvik, S.D. Arthur J. CrystalGrowth., 264, 172. (2004)
    [21] Hiroshi Amano, Masahiro Kito, Kazumasa Hiramatsu and Isamu Akasaki, Jpn. J. Appl. Phys Part 2-Letters 28 , 2112 (1989)
    [22] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys. 31,1258 (1992)
    [23] D. S. Li, H. Chen, H. B. Yu, H. Q. Jia, Q. Huang, and J. M. Zhou, J.Appl. Phys., 96, 1111(2004)
    [24] X.A. Cao, J.A. Teetsov, F. Shahedipour-Sandvik, S.D. Arthur J. CrystalGrowth., 264, 172. (2004)
    [25] Y. Honda, Y. Iyechika, T. Maeda, H. Miyakei and K. Hiramatsui, Jpn. J.Appl. Phys. Vol. 40 (2001) pp. L309–L312
    [26] 徐崑庭,“極化場量對氮化鎵多重量子井光學特性之研究”, 國立台灣大學光電工程研究所碩士論文, 2001

    QR CODE
    :::