| 研究生: |
李霽軒 Chi-Hsuan Li |
|---|---|
| 論文名稱: |
加速通用趨勢更新過程下的貝氏分析及其在鋰電池資料之應用 Bayesian Analysis of Accelerated Generic Trend Renewal Processes with an Application to Lithium-ion Battery Data |
| 指導教授: |
樊采虹
Tsai-Hung Fan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 通用趨勢更新過程 、階層貝氏 、貝氏適合度檢定 、失效時間分布 、性能終止時間 |
| 外文關鍵詞: | generic trend renewal process, hierarchical Bayesian, Bayesian goodness of fit, failure time distributions, end of performance |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
針對經由充放電過程可重複使用但性能遞減的鋰電池衰變資料,通常可利用與時間相關的趨勢函數經變數變換轉換為衰變增量為獨立同分布的更新過程 (renewal process),即趨勢更新過程 (trend renewal process) 來配適。囿於參數的不可辨別性,傳統趨勢更新過程限制更新分布之期望值為一,卻因此使模型中之參數失去原有的共軛 (conjugate) 結構,導致難以建構隨機效應模型描述具個別差異性的資料。為保留更新分布參數的共軛性,通用趨勢更新過程 (generic trend renewal process) 以趨勢函數參數之限制取代期望值為一的假設,俾能更具彈性地發展隨機效應模型。本文將通用趨勢更新過程推廣至加速通用趨勢更新過程 (accelerate trend renewal process; AGTRP),在參數與加速應力呈對數線性關係下,分別考慮伽瑪、韋伯與逆高斯更新分布之 AGTRP 模型,利用參數之共軛性質,建立貝氏 AGTRP 模型,用以分析不同放電電流下的電池電容量比資料;在隨機效應模型中以階層貝氏 (hierarchical Bayes) 方法,引入隱藏變數捕捉電池間的個別差異。依據偏差訊息準則 (deviance information criterion; DIC) 以及對數邊際概似 (log marginal likelihood; LML) 值兩種常用的貝氏選模準則作為綜合依據,並由後驗預測 p-值 (posterior predictive p-value) 確認模型與資料之適切性。最後,根據加速資料配適之最適 AGTRP 模型,外插至正常應力水準下推估可修復產品的使用壽命。應用於電池充放電資料實例分析中,亦將 AGTRP 模型下所得電池的壽命指標與正常放電電流下衰變資料所得結果進行比較,經兩樣本 Kolmogorov-Smirnov 貝氏檢定,顯示兩組資料所得之預測壽命分布並無顯著不同,驗證由加速模型外插至正常應力水準下之壽命推論的合理性。
For the cyclic degradation data of lithium-ion batteries, which can be repeatedly charged and discharged but exhibit gradual performance decline, the trend renewal process (TRP) is commonly adopted. In this approach, time-dependent trend functions transform correlated data into independent and identically distributed increments that follow a renewal process. However,
due to the issue of parameters identifiability, TRP models assume the expectation of the renewal distribution to be one. Such restriction destroys the conjugate structure of the parameters. The generic trend renewal process (GTRP), making the restriction on the trend-function parameter instead of expectation, preserves conjugacy and thus provides greater flexibility for modeling random effects. Based on this framework, this study develops Bayesian accelerated generic trend renewal processes (AGTRP) with gamma, Weibull, and inverse Gaussian renewal distributions respectively, by assuming a log-linear relationship between the parameters and the accelerated stress variable. Leveraging the conjugate structure, random-effects AGTRP models are further constructed by introducing latent variables within a hierarchical Bayesian model to capture unit-to-unit heterogeneity. Model performance is assessed using the deviance information criterion (DIC) and log marginal likelihood (LML), while posterior predictive p-value evaluates the corresponding model adequacy. The selected AGTRP model is extrapolated to draw the predictive life inference under normal use condition. A Bayesian two-sample Kolmogorov-Smirnov test comparing the extrapolated distribution with normal-stress experimental data shows insignificant differences between the resulting life distributions in the all data analysis, supporting the validity of AGTRP for extrapolative lifetime prediction.
[1] Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis (Second
Edition ), Springer-Verlag, New York.
[2] Bloom, I., Cole, B. W., Sohn, J. J., Jones, S. A., Polzin, E. G., Battaglia, V. S.,
Henriksen, G. L., Motloch, C., Richardson, R., Unkelhaeuser, T., Ingersoll, D., and
Case, H. L. (2001). An accelerated calendar and cycle life study of Li-ion cells,
Journal of Power Sources, 101, 238-247.
[3] Dodge, Y. (2008). Kolmogorov-Smirnov Test. In The Concise Encyclopedia of
Statistics, 283-287. Springer, New York, NY.
[4] Doyle, M., Fuller, T. F., and Newman, J. (1993). Modeling of galvanostatic charge
and discharge of the lithium/polymer/insertion cell, Journal of the Electrochemical
Society, 140, 1526-1533.
[5] Fan, T. H., Dong, Y. S., and Peng, C. Y. (2024). A complete Bayesian degradation
analysis based on inverse Gaussian processes, IEEE Transactions on Reliability, 73,
536-548.
[6] Fan, T. H., Wang, Y. F., and Wu, C. K.(2025). Bayesian analysis of acceler-
ated trend renewal processes with application to lithium-ion battery data, IEEE
Transactions on Reliability, accepted for publication.
[7] Gelfand, A. E. and Dey, D. K. (1994). Bayesian model choice: asymptotics and ex-
act calculations, Jounal of the Royal Statistical Society: Series B (Methodological),
56, 501-514.
[8] Gelman, A., Meng, X. L. and Stern, H. (1996). Posterior predictive assessment of
model fitness via realized discrepancies, Statistica Sinica, 6, 733-807.
[9] Gelman, A. (2004). Parameterization and Bayesian modeling, Journal of the Amer-
ican Statistical Association, 99, 537-545.
[10] Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D.
B. (2013). Bayesian Data Analysis (Third Edition), Chapman and Hall/CRC, New
York.
[11] He, D., Liu, L., and Cao, M. (2021). A doubly accelerated degradation model
based on the inverse Gaussian process and its objective Bayesian analysis, Journal
of Statistical Computation and Simulation, 91, 1485-1503.
[12] Hu, G., Huffer, F., and Chen, M.-H. (2019). New development of Bayesian variable
selection criteria for spatial point process with applications, Bayesian Analysis, 14,
865-890.
[13] Lindqvist, B. H., Elvebakk, G., and Heggland, K. (2003). The trend-renewal process
for statistical analysis of repairable systems, Technometrics, 45, 31-44.
[14] Lindqvist, B. H. (2006). On the statistical modeling and analysis of repairable
systems, Statistical Science, 21, 532-551.
[15] Maity, A. K., Basu, S., and Ghosh, S. (2021). Bayesian criterion-based variable
selection, Journal of the Royal Statistical Society: Series C (Applied Statistics), 70,
1093-1117.
[16] Meng, X. L. (1994). Posterior predictive p-values, The Annals of Statistics, 22,
1142-1160.
[17] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.
(1953). Equation of state calculations by fast computing machines, The Journal of
Chemical Physics, 21, 1087-1092.
[18] Papaspiliopoulos, O., Roberts, G. O., and Sk¨old, M. (2007). A general framework
for the parametrization of hierarchical models, Statistical Science, 22, 59-73.
[19] Peng, C. Y. (2015). Inverse Gaussian processes with random effects and explanatory
variables for degradation data, Technometrics, 57, 100-111.
[20] Plett, G. L. (2004). Extended Kalman filtering for battery management systems of
LiPB-based HEV battery packs: Part 1. Background, Journal of Power Sources,
134, 252-261.
[21] Plummer, M. (2008). Penalized loss functions for Bayesian model comparison, Bio-
statistics, 9, 523-539.
[22] Pooley, C. M., and Marion, G. (2018). Bayesian model evidence as a practical
alternative to deviance information criterion, Bioinformatics, 34, 3129-3131.
[23] Qin, H., Zhang, S. and Zhou, W. (2013). Inverse Gaussian process-based corrosion
growth modeling and its application in the reliability analysis for energy pipelines,
Frontiers of Structural and Civil Engineering, 7, 276-287.
[24] Severson, K. A., Attia, P. M., Jin, N., Perkins, N., Jiang, B., Yang, Z., Chen, M.
H., Aykol, M., Herring, P. K., Fraggedakis, D., Bazant, M. Z., Harris, S. J., Chueh,
W. C., and Braatz, R. D. (2019). Data-driven prediction of battery cycle life before
capacity degradation, Nature Energy, 4, 383-391.
[25] Smit, N., and Raubenheimer, L. (2022). Bayes factors for accelerated life testing
models, Communications for Statistical Applications and Methods, 29, 513-533.
[26] Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A. (2002).
Bayesian measures of model complexity and fit. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 64, 583-639.
[27] Todinov, M. T. (2006). Reliability analysis based on the losses from failures. Risk
Analysis, 26, 311-335.
[28] Wang, D., Miao, Q., and Pecht, M. (2014). Prognostics of lithium-ion batteries
based on the wiener process with recursive bayesian estimation, Journal of Power
Sources, 239, 253-264.
[29] Wang, X. and Xu, D. (2010). An inverse Gaussian process model for degradation
data, Technometrics, 52, 188-197.
[30] Wang, Y. F., Tseng, S. T., Lindqvist, B. H., and Tsui, K. L. (2019). End of
performance prediction of lithium-ion batteries. Journal of Quality Technology, 51,
198-213.
[31] Wen, Y., Wu, J., Das, D., and Tseng, B. (2018). Degradation modeling and RUL
prediction using Wiener process subject to multiple change points and unit hetero-
geneity, Reliability Engineering and System Safety, 176, 122-136.
[32] Ye, Z. S., and Xie, M. (2015). Stochastic modelling and analysis of degradation for
highly reliable products, Applied Stochastic Models in Business and Industry, 31,
16-32.
[33] Yuan, R., Tang, M., Wang, H., and Li, H. (2019). A reliability analysis method of
accelerated performance degradation based on Bayesian strategy, IEEE Access, 7,
171153-171162.
[34] Zhu, L. and Carlin, B. P. (2000). Comparing hierarchical models for spatio-temporally
misaligned data using the deviance information criterion, Statistics in Medicine, 19,
2265-2278.
[35] 吳璟賢 (2016). 電池壽命的 EOP 推論及其最適實驗配置問題,國立清華大學碩士
論文。
[36] 童義軒 (2023). 逆高斯過程之貝氏加速衰變試驗分析與序列預測,國立中央大學
碩士論文。
[37] 曾柏善 (2024). 通用趨勢更新過程及其在可靠度分析之應用,國立中央大學碩士
論文。