跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳承哲
WU,CHENG-TSE
論文名稱: 利用壓縮感知法消除多輸入輸出電力線傳輸之脈衝雜訊
Impulsive Noise Mitigation with Compressive Sensing for MIMO Power Line Communication
指導教授: 張大中
Dah-Chung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 85
中文關鍵詞: 電力線通訊脈衝雜訊壓縮感知
外文關鍵詞: powerline communication, impulsive noise, compressive sensing
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電力線通訊(powerline communications, PLC) 最近研究採用多輸入多輸出(Multiple-input Multiple-output, MIMO) 的正交分頻多工(orthogonal frequencydivisionmultiplexing, OFDM) 系統,以改善過去在實體層(physical layer) 資料傳輸效能不足的問題,然而電力線系統除了存在可加性白高斯雜訊(Additive White Gaussian Noise, AWGN) 之外,還會產生具有高能量的脈衝雜訊(impulsive noise,IN),導致系統的效能嚴重傷害。
    有別於過去一些傳統的脈衝雜訊消除法,在本論文中我們使用一個名為壓縮感知(compressive sensing, CS) 的演算法來估計PLC 測脈衝雜訊的能量及其在傳送過程中發生的時機點後將其進行濾除的動作,為了證明CS 演算法的有效性,我們針對不同狀況下的脈衝雜訊做模擬分析,並搭配後續的通道估測及MIMO解調器,驗證系統的位元錯誤率(bit-error rate, BER) 在相同SNR 下能與無脈衝
    雜訊時的性能相近。


    Powerline communications(PLC) has been recently studied to apply the multipleinput
    multiple-output(MIMO)orthogonal frequency-division multiplexing (OFDM) technology
    in order to solve the problem of insufficient data transmission rate on the physical
    layer. However, the powerline system not only has the additive white Gaussian
    noise(AWGN), but also has high energy of impulsive noise(IN) that can do serious damage
    to the performance of the PLC system.
    Very different from some traditional impulsive noise elimination methods in the past,
    we develop an algorithm called compressive sensing(CS) in this thesis to estimate the
    energy of the impulsive noise and its presence position in the process of transmission
    and then filter it out. In order to show the effectiveness of the proposed algorithm, we
    simulate the MIMO PLC transmission with the impulsive noise in the different environments.
    Together with the MIMO channel estimation and different MIMO detection
    methods, we can see that the bit-error rate(BER) performance of the proposed algorithm
    can approach the case without the impulsive noise at the same SNR.

    中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 第1 章序論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 章節架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 第2 章System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 PLC 規格介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 調變方式及載波設置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 功率分配. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 MIMO precoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.4 OFDM 傳送端流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.5 OFDM 接收端流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 PLC 上的MIMO 通道模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 脈衝雜訊的產生及模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 第3 章消除脈衝雜訊以及解調MIMO 訊號. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 非線性預處理器消除脈衝雜訊. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 以Compressive Sensing 法消除IN . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.1 Compressive Sensing 演算法的介紹. . . . . . . . . . . . . . . . . . . . . . . 16 3.2.2 Compressive Sensing 法之IN 消除. . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 通道估測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 MIMO-Detector 訊號偵測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.1 回授通道資訊給傳送端做MIMO precoding . . . . . . . . . . . . . . . . . 29 3.4.2 OSIC 偵測法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 第4 章系統模擬與結果分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.1 模擬環境說明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 通道估計性能比較. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2.1 􀀀 = 0:001 時非線性預處理器的門檻. . . . . . . . . . . . . . . . . . . . . . 41 4.2.2 􀀀 = 10􀀀5 時非線性預處理器的門檻. . . . . . . . . . . . . . . . . . . . . . . 48 4.3 precoding 架構下不同IN 消除法之BER . . . . . . . . . . . . . . . . . . . . . . . 56 4.4 使用CS 法時不同MIMO detector 之BER 差別. . . . . . . . . . . . . . . . . 60 4.5 使用CS 法脈衝雜訊的最大出現機率. . . . . . . . . . . . . . . . . . . . . . . . . 66 第5 章結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    [1] Y. Wu and W. Y. Zou, “Orthogonal frequency division multiplexing: a multicarrier
    modulation scheme,” IEEE Transactions on Consumer Electronics, vol. 41,
    no. 3, pp. 392–399, Aug 1995.
    [2] R. v. Nee and R. Prasad, OFDM for Wireless Multimedia Communications, 1st ed.
    Norwood, MA, USA: Artech House, Inc., 2000.
    [3] OFDM for Wireless Communications Systems. Norwood, MA, USA: Artech
    House, Inc., 2004.
    [4] D. F. Tseng, R. B. Yang, T. R. Tsai, Y. S. Han, and W. H. Mow, “Efficient clipping
    for broadband power line systems in impulsive noise environment,” in 2012 IEEE
    International Symposium on Power Line Communications and Its Applications,
    March 2012, pp. 362–367.
    [5] H. Meng, Y. L. Guan, and S. Chen, “Modeling and analysis of noise effects on
    broadband power-line communications,” IEEE Transactions on Power Delivery,
    vol. 20, no. 2, pp. 630–637, April 2005.
    [6] L. Stadelmeier, D. Schill, A. Schwager, D. Schneider, and J. Speidel, “Mimo
    for inhome power line communications,” in 7th International ITG Conference on
    Source and Channel Coding, Jan 2008, pp. 1–6.
    [7] L. T. Berger, A. Schwager, P. Pagani, and D. M. Schneider, “Mimo power line
    communications,” IEEE Communications Surveys Tutorials, vol. 17, no. 1, pp.
    106–124, Firstquarter 2015.
    [8] H. A. Latchman, S. Katar, L. Yonge, and S. Gavette, Appendix B: HomePlug
    AV Parameter Specification. Wiley-IEEE Press, 2013, pp. 384–. [Online].
    Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6629431
    [9] L. YONGE, J. ABAD, K. AFKHAMIE, L. Guerrieri, S. KATAR, H. LIOE,
    P. PAGANI, R. RIVA, D. M. SCHNEIDER, and A. SCHWAGER, “HomePlug
    AV2: Next-Generation Broadband over Power Line,” in MIMO power line
    communications : narrow and broadband standards, EMC, and advanced
    processing, ser. Devices, Circuits, and Systems. CRC Press, 2014, pp. 391 –
    426. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01066347
    [10] H. Latchman, S. Katar, L. Yonge, and A. Amarsingh, “High speed multimedia
    and smart energy plc applications based on adaptations of homeplug av,” in 2013
    IEEE 17th International Symposium on Power Line Communications and Its Applications,
    March 2013, pp. 143–148.
    [11] M. Zimmermann and K. Dostert, “Analysis and modeling of impulsive noise in
    broad-band powerline communications,” IEEE Transactions on Electromagnetic
    Compatibility, vol. 44, no. 1, pp. 249–258, Feb 2002.
    [12] G. Ndo, P. Siohan, and M. H. Hamon, “Adaptive noise mitigation in impulsive
    environment: Application to power-line communications,” IEEE Transactions on
    Power Delivery, vol. 25, no. 2, pp. 647–656, April 2010.
    [13] J. J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. O. Borjesson, “On
    channel estimation in ofdm systems,” in 1995 IEEE 45th Vehicular Technology
    Conference. Countdown to the Wireless Twenty-First Century, vol. 2, Jul 1995,
    pp. 815–819 vol.2.
    [14] D. Bueche, P. Corlay, M. Gazalet, and F. X. Coudoux, “A method for analyzing
    the performance of comb-type pilot-aided channel estimation in power line communications,”
    IEEE Transactions on Consumer Electronics, vol. 54, no. 3, pp.
    1074–1081, August 2008.
    [15] M. Ghosh, “Analysis of the effect of impulse noise on multicarrier and single carrier
    qam systems,” IEEE Transactions on Communications, vol. 44, no. 2, pp.
    145–147, Feb 1996.
    [16] F. H. Juwono, Q. Guo, D. Huang, and K. P. Wong, “Deep clipping for impulsive
    noise mitigation in ofdm-based power-line communications,” IEEE Transactions
    on Power Delivery, vol. 29, no. 3, pp. 1335–1343, June 2014.
    [17] V. N. Papilaya and A. J. H. Vinck, “Investigation on a new combined impulsive
    noise mitigation scheme for ofdm transmission,” in 2013 IEEE 17th International
    Symposium on Power Line Communications and Its Applications, March 2013, pp.
    86–91.
    [18] K. M. Rabie and E. Alsusa, “Preprocessing-based impulsive noise reduction for
    power-line communications,” IEEE Transactions on Power Delivery, vol. 29,
    no. 4, pp. 1648–1658, Aug 2014.
    [19] S. V. Zhidkov, “Performance analysis and optimization of ofdm receiver with
    blanking nonlinearity in impulsive noise environment,” IEEE Transactions on Vehicular
    Technology, vol. 55, no. 1, pp. 234–242, Jan 2006.
    [20] ——, “Analysis and comparison of several simple impulsive noise mitigation
    schemes for ofdm receivers,” IEEE Transactions on Communications, vol. 56,
    no. 1, pp. 5–9, January 2008.
    [21] G. Caire, T. Y. Al-Naffouri, and A. K. Narayanan, “Impulse noise cancellation in
    ofdm: an application of compressed sensing,” in 2008 IEEE International Symposium
    on Information Theory, July 2008, pp. 1293–1297.
    [22] W. Ding, Y. Lu, F. Yang, W. Dai, P. Li, S. Liu, and J. Song, “Spectrally efficient
    csi acquisition for power line communications: A bayesian compressive sensing
    perspective,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 7,
    pp. 2022–2032, July 2016.
    [23] A. Mehboob, L. Zhang, and J. Khangosstar, “Adaptive impulsive noise mitigation
    using multi mode compressive sensing for powerline communications,” in 2012
    IEEE International Symposium on Power Line Communications and Its Applications,
    March 2012, pp. 368–373.
    [24] S. Liu, F. Yang, W. Ding, J. Song, and Z. Han, “Impulsive noise cancellation for
    mimo-ofdm plc systems: A structured compressed sensing perspective,” in 2016
    IEEE Global Communications Conference (GLOBECOM), Dec 2016, pp. 1–6.
    [25] A. Scaglione, P. Stoica, S. Barbarossa, G. B. Giannakis, and H. Sampath, “Optimal
    designs for space-time linear precoders and decoders,” IEEE Transactions on
    Signal Processing, vol. 50, no. 5, pp. 1051–1064, May 2002.
    [26] D. J. Love, R. W. Heath, V. K. N. Lau, D. Gesbert, B. D. Rao, and M. Andrews, “An
    overview of limited feedback in wireless communication systems,” IEEE Journal
    on Selected Areas in Communications, vol. 26, no. 8, pp. 1341–1365, October
    2008.
    [27] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-blast:
    an architecture for realizing very high data rates over the rich-scattering wireless
    channel,” in 1998 URSI International Symposium on Signals, Systems, and Electronics.
    Conference Proceedings (Cat. No.98EX167), Sep 1998, pp. 295–300.
    [28] G. D. Golden, C. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky, “Detection
    algorithm and initial laboratory results using v-blast space-time communication
    architecture,” Electronics Letters, vol. 35, no. 1, pp. 14–16, Jan 1999.
    [29] L. Yonge, J. Abad, K. Afkhamie, L. Guerrieri, S. Katar, H. Lioe, P. Pagani,
    R. Riva, D. M. Schneider, and A. Schwager, “An overview of the homeplug av2
    technology,” Journal of Electrical and Computer Engineering, vol. 2013, p. 20,
    2013. [Online]. Available: http://dx.doi.org/10.1155/2013/892628
    [30] A. Nayagam, S. Katar, D. Rende, K. Afkhamie, and L. Yonge, “Tradeoff between
    channel estimation accuracy and application throughput for in-home mimo power
    line communication,” in 2011 IEEE International Symposium on Power Line Communications
    and Its Applications, April 2011, pp. 411–417.
    [31] M. Zimmermann and K. Dostert, “A multipath model for the powerline channel,”
    IEEE Transactions on Communications, vol. 50, no. 4, pp. 553–559, Apr 2002.
    [32] T. Shongwey, A. J. H. Vinck, and H. C. Ferreira, “On impulse noise and its models,”
    in 18th IEEE International Symposium on Power Line Communications and
    Its Applications, March 2014, pp. 12–17.
    [33] E. C and J. Romberg, “?1-magic: Recovery of sparse signals via convex programming,”
    2005.
    [34] E. J. Candes and P. A. Randall, “Highly robust error correction byconvex programming,”
    IEEE Transactions on Information Theory, vol. 54, no. 7, pp. 2829–2840,
    July 2008.

    QR CODE
    :::