| 研究生: |
傅彥達 Yen-Ta Fu |
|---|---|
| 論文名稱: |
臺灣懸浮微粒之生命週期與年際變化 The Lifecycle and the Interannual Variation of Particulate Matter in Taiwan |
| 指導教授: | 嚴明鉦 |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
地球科學學院 - 大氣科學學系 Department of Atmospheric Sciences |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 懸浮微粒 、東亞季風 、生命週期 、聖嬰 |
| 外文關鍵詞: | Particulate Matter, East Asian Monsoon, Lifecycle, ENSO |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,對人體健康造成嚴重威脅的懸浮微粒(Particulate matter,簡稱PM),已在全球成了相當重要的議題。然而,我們對於其在氣候統計上的年週期變化以及年際變化依舊沒有充分的了解與估量。
在本研究中,我們發現東亞季風環流的垂直運動能影響邊界層高度的發展,進而調節臺灣PM濃度的年週期變化。藉由了解PM長期氣候的年週期變化,我們可以定義臺灣的污染季起於每年的10月並延續到隔年的4月。接著,我們進一步劃分污染季生命週期的5個相位,分別為:肇始(PM10 肇始日PM10 onset date,簡稱PMOD)、活躍(11月至隔年1月November to January,簡稱NDJ)、中斷(農曆新年期間,約1月底至2月初)、 復甦(2月至4月February to April,簡稱FMA)以及衰退(PM10 衰退日PM10 retreat date,簡稱PMRD),此結果正好與已知的東亞夏季季風生命週期相似。
有了PM污染季生命週期的明確定義後,我們得以更深入地針對其年際變化進行探討。結果顯示,在聖嬰時期(El Niño)的PM肇始日(PMODs)與衰退日(PMRDs)都較反聖嬰時期(La Niña)提早,尤其肇始日,在兩種不同的聖嬰-南方震盪(El Niño-Southern Oscillation,簡稱ENSO)事件下,有相當顯著的20天差異。在污染季的活躍期,不同的ENSO情境並未對PM濃度變化造成明顯的影響,反而是在復甦期有著顯著的差異。總結來說,氣候統計上PM污染季在深冬時期受到年循環的季節變化所主導,但在季節轉換時期的10月以及3月,ENSO則對PM濃度變化有著相當顯著的作用。此外,我們也測試了準兩年振盪(Quasi-Biennial Oscillation;QBO)是否同樣對PMOD/PMRD造成影響,結果顯示QBO與PMOD/PMRD皆未有顯著的關係。
Particulate matter (PM), which causes severe problems in human health, has become an important global issue in recent years. However, the climatology of annual variations and the interannual variations in PM concentrations have still not been fully evaluated.
In our research, we found that the vertical motion of the East Asian monsoon system can affect the development of the boundary layer height and subsequently regulate the annual variation in PM over Taiwan. By climatologically understanding the annual variation in PM, the PM pollution season in Taiwan, from October to the following April, can be delineated. Then, we further defined five phases of the PM pollution lifecycle that are similar to the well-defined East Asian summer monsoon lifecycle: onset (PM10 onset date, PMOD), active (November to January, NDJ), break (between the end of January and early February), revival (February to April, FMA) and retreat (PM10 retreat date, PMRD).
After the PM pollution lifecycle was precisely defined, the interannual variation in the PM concentration became clearer. The starting (PMODs) and ending (PMRDs) dates of the PM pollution seasons are earlier during El Niño episodes than during La Niña episodes; in particular, there is a significant 20-day difference between their starting dates. For the active phase (NDJ), climatological PM pollution development does not show distinct features under the two different El Niño-Southern Oscillation (ENSO) episodes. On the other hand, the influence of the El Niño and La Niña forcings on PM pollution during the revival phase (FMA) is significant. In summary, the climatology of PM pollution in winter is dominated by the annual seasonal cycle, but during the seasonal transition periods, October and March are significantly modulated by ENSO. In addition, our study examined the relationship between PMOD/PMRD and quasi-biennial oscillation (QBO). The results show that the QBO has no significant influence on either the PMOD or the PMRD.
Ashouri, H., Hsu, K., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., Nelson, B. R., & Prat, O. P. (2015): PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bulletin of the American Meteorological Society, 96(1), 69-83. https://doi.org/10.1175/BAMS-D-13-00068.1
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., & Takahashi, M, (2001): The quasi-biennial oscillation. Reviews of Geophysics, 39(2), 179–229. https://doi.org/10.1029/1999rg000073
Bui-Manh, H., Peng C.-M., Fu Y.-T., Dinh D.-T., Lin N.-H., and Yen M.-C. (2021): The second rainy stage onset in the Central Highlands of Vietnam. Geophysical Research Letters, 48, e2021GL093107. https://doi.org/10.1029/2021GL093107.
Chen, T.-C., & Yen, M.-C. (1986): The 40–50 Day Oscillation of the Low-Level Monsoon Circulation over the Indian Ocean. Monthly Weather Review, 114(12), 2550-2570. doi: https://doi.org/10.1175/1520-0493(1986)114<2550:TDOOTL>2.0.CO;2
Chen, T.-C. & Yen, M.-C. (1991): A study of the diabatic heating associated with the Madden-Julian Oscillation. Journal of Geophysical Research, 96, 13163–13177. https://doi.org/10.1029/91JD01356
Chen, T.-C., Yen, M.-C., Hsieh, J.-C., & Arritt, R. W. (1999): Diurnal and Seasonal Variations of the Rainfall Measured by the Automatic Rainfall and Meteorological Telemetry System in Taiwan. Bulletin of the American Meteorological Society, 80(11), 2299–2312.
https://doi.org/10.1175/1520-0477(1999)080%3C2299:dasvot%3E2.0.co;2
Chen, T.-C., Yen, M.-C., Huang, W.-R., & Gallus, W. A. (2002): An East Asian Cold Surge: Case Study. Monthly Weather Review, 130(9), 2271–2290. https://doi.org/10.1175/1520-0493(2002)130%3C2271:aeacsc%3E2.0.co;2
Chen, T.-C. (2003): Maintenance of Summer Monsoon Circulations: A Planetary-Scale Perspective. Journal of Climate, 16(12), 2022–2037. https://doi.org/10.1175/1520-0442(2003)016%3C2022:mosmca%3E2.0.co;2
Chen, T.-C., Wang, S.-Y., Huang, W.-R., & Yen, M.-C. (2004): Variation of the East Asian Summer Monsoon Rainfall. Journal of Climate, 17(4), 744-762. doi: https://doi.org/10.1175/1520-0442(2004)017<0744:VOTEAS>2.0.CO;2
Chen, T.-C. (2005): The Structure and Maintenance of Stationary Waves in the Winter Northern Hemisphere. Journal of the Atmospheric Sciences, 62(10), 3637-3660. doi: https://doi.org/10.1175/JAS3566.1
Fu, Y.-T., Yen M.-C., Lin N.-H., Bui-Manh H., Lin C.-C., Yu J.-Y., Peng C.-M., and Dinh D.-T., (2023): Footprints of El Niño La Niña on the evolution of particulate matter over subtropical Island Taiwan. npj Climate and Atmospheric Science, 6, 42 (2023). https://doi.org/10.1038/s41612-023-00383-6
Gray, L. J., Anstey, J. A., Kawatani, Y., Lu, H., Osprey, S., & Schenzinger, V., (2018): Surface impacts of the Quasi Biennial Oscillation. Atmospheric Chemistry and Physics, 18(11), 8227–8247. https://doi.org/10.5194/acp-18-8227-2018
Hersbach, H. & Dee, D. (2016): ERA5 reanalysis is in production. ECMWF newsletter, 147(7), 5.
Hsu, C.-H. and Cheng, F.-Y., (2019): Synoptic Weather Patterns and Associated Air Pollution in Taiwan. Aerosol and Air Quality Research, 19, 1139-1151. https://doi.org/10.4209/aaqr.2018.09.0348
Hitchman, M. H., Shigeo Yoden, Haynes, P. D., Kumar, V., & Tegtmeier, S., (2021): An Observational History of the Direct Influence of the Stratospheric Quasi-biennial Oscillation on the Tropical and Subtropical Upper Troposphere and Lower Stratosphere. Journal of the Meteorological Society of Japan. Ser. II, 99(2), 239–267. https://doi.org/10.2151/jmsj.2021-012
Huang, W.-R., Liu, P.-Y., & Hsu, J. (2021): Multiple timescale assessment of wet season precipitation estimation over Taiwan using the PERSIANN family products. International Journal of Applied Earth Observation and Geoinformation, 103, 102521. https://doi.org/10.1016/j.jag.2021.102521
Jorge Luis García-Franco, Gray, L. J., Osprey, S., Chadwick, R., & Martin, Z. (2022). The tropical route of quasi-biennial oscillation (QBO) teleconnections in a climate model. Weather and Climate Dynamics, 3(3), 825–844. https://doi.org/10.5194/wcd-3-825-2022
Jingliang Huangfu, Tang, Y., Ma, T., Chen, W., & Wang, L., (2021): Influence of the QBO on tropical convection and its impact on tropical cyclone activity over the western North Pacific. Climate Dynamics, 57(3-4), 657–669. https://doi.org/10.1007/s00382-021-05731-x
Krishnamurti, T. N., & D. Subrahmanyam. (1982): The 30–50 Day Mode at 850 mb During MONEX. Journal of the Atmospheric Sciences, 39(9), 2088–2095. https://doi.org/10.1175/1520-0469(1982)039%3C2088:tdmamd%3E2.0.co;2
Lin, C.-Y., Liu, S. C., Chou, C. C.-K., Liu, T. H., Lee, C.-T., Yuan, C.-S., Shiu, C.-J., & Young, C.-Y., (2004): Long-Range Transport of Asian Dust and Air Pollutants to Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 15(5), 759. https://doi.org/10.3319/tao.2004.15.5.759(adse)
Lin, C.-Y., Wang, Z., Chen, W.-N., Chang, S.-Y., Chou, C. C. K., Sugimoto, N., and Zhao, X., (2007): Long-range transport of Asian dust and air pollutants to Taiwan: observed evidence and model simulation. Atmospheric Chemistry and Physics, 7, 423–434, https://doi.org/10.5194/acp-7-423-2007
Liess, S., & Geller, M. A., (2012): On the relationship between QBO and distribution of tropical deep convection. Journal of Geophysical Research: Atmospheres, 117, D3108. https://doi.org/10.1029/2011jd016317
Lin, C.-C., Chen, W.-N., Loftus, A.M., Lin, C.-Y., Fu, Y.-T., Peng, C.-M. and Yen, M.-C, (2017): Influences of the Long-Range Transport of Biomass-Burning Pollutants on Surface Air Quality during 7-SEAS Field Campaigns. Aerosol and Air Quality Research. 17: 2595-2607. https://doi.org/10.4209/aaqr.2017.08.0273
Wang, C., Jia, M., Xia, H., Wu, Y., Wei, T., Shang, X., Yang, C., Xue, X., and Dou, X., (2019): Relationship analysis of PM2.5 and boundary layer height using an aerosol and turbulence detection lidar. Atmospheric Measurement Techniques, 12, 3303–3315, https://doi.org/10.5194/amt-12-3303-2019
World Health Organization, (2021): WHO global air quality guidelines for particulate matter, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. (WHO press, 2021). https://apps.who.int/iris/handle/10665/345329
Xiang, Y., Zhang, T., Liu, J., Lv, L., Dong, Y., & Chen, Z., (2019): Atmosphere boundary layer height and its effect on air pollutants in Beijing during winter heavy pollution. Atmospheric Research, 215, 305–316. https://doi.org/10.1016/j.atmosres.2018.09.014
Yen, M.-C. and Chen, T.-C. (2000): Seasonal variation of the rainfall over Taiwan. International Journal of Climatology, 20, 803-809. https://doi.org/10.1002/1097-0088(20000615)20:7<803::AID-JOC525>3.0.CO;2-4
Yen, M.-C., & Chen, T.-C. (2002): A revisit of the tropical-midlatitude interaction in East Asia caused by cold surges. Journal of the Meteorological Society of Japan, 80(5), 1115–1128. https://doi.org/10.2151/jmsj.80.1115