| 研究生: |
張家豪 Chia-hao Chang |
|---|---|
| 論文名稱: |
共濺鍍鋁鍺薄膜之接合特性研究 Bonding Characteristics of Co-sputtering Aluminum-Germanium Thin Film |
| 指導教授: |
吳子嘉
Albert T. Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 鋁鍺薄膜 、共濺鍍 、共晶接合 |
| 外文關鍵詞: | Al-Ge Thin Film, Co-sputtered, Eutectic Bonding |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在微電機封裝中利用鋁鍺薄膜共晶接合可達到好的接合強度和良好氣密性特性,共晶鋁鍺薄膜大多以雙層膜結構方式接合,但此雙層膜結構需藉由時間擴散達到均質共晶組成。本研究利用濺鍍機以共濺鍍的方式製備鋁鍺薄膜,其組成約為72.8 at.%的鋁及約為27.2 at.%的鍺,希望能藉由共濺鍍直接形成均質鋁鍺薄膜以達到良好的接合行為,本研究分析不同接合溫度、時間和壓力等參數影響共濺鍍鋁鍺薄膜的接合特性。
由結果可發現在低於熔點的接合溫度之接合特性與富鋁相的生成有極大關聯,尤其接合溫度劇烈影響富鋁相形貌,當接合溫度在400 oC、接合壓力0.3 MPa和接合時間30 min時可有最佳的接合剪切強度,原因可能為微結構出現由富鋁相形成之網狀結構而增強機械性質,而當接合溫度提升至500 oC後,卻因生成大面積的富鍺相而降低接合剪切強度。
In MEMS packaging, aluminum-germanium eutectic bonding can achieve excellent bonding strength and good hermetic performance. Under many circumstances, using bi-layer aluminum/germanium thin film is the most common bonding approach, however it requires time and temperature to diffuse and to reach the homogeneous eutectic composition. This study used sputter technique to co-sputter aluminum-germanium thin film with the composition 72.8 at.% Al and 27.2 at.% Ge. This thesis investigated and analyzed the effect on the compositional variation and bonding strength under different parameters, such as bonding temperature, bonding pressure and bonding time.
The results showed that the formation of the Al-rich region and its occupying areas could greatly influence the bonding characteristics when the bonding condition was below eutectic temperature. Furthermore, under a bonding temperature of 400 oC, bonding pressure of 0.3 MPa and bonding time of 30 min the film exhibited the optimal shear strength due to the formation of network structure of aluminum rich regions that could enhance the mechanical properties. The bonding strength would be weakened by the formation of large area of Ge rich phase when raising the bonding temperature to 500 oC.
[1] R. Bogue, “MEMS Sensors: Past, Present and Future”, Sensor Review, 27, 7-13 (2007)
[2] C. M. Ho, Micro-Electro-Mechanical- Systems (MEMS) and Fluid Flows, Annual Review of Fluid Mechanics, 30, 579-612 (1998)
[3] Sandia National Laboratories : “MEMS Thermal Actuator”,
http://www.memx.com/image_gallery.htm
[4] D. Brei, “Deflection Performance of a Bi-Directional Distributed Polymeric Piezoelectric Micromotor”, J. Microelectromech. S., 6, 62-69 (1997)
[5] L. Peters, “Wafer-Level Packaging Slices MEMS' Costs”, Micromanufacturing, 4, (2011)
[6] S. Farrens, “Wafer Level Packaging: Balancing Device Requirements and Materials Properties”, Pan Pacific Microelectronics Symposium, 22-24 (2008)
[7] R. Joyce, “Low cost anodic bonding for MEMS packaging applications”, Microsystem Technologies, 20, 1153-1158 (2014)
[8] T. L. Svetlana, “Bond-Quality Characterization of Silicon-Glass Anodic Bonding”, Sensors and Actuators A, 60, 223-227 (1997)
[9] V. G. Kutchoukov, “Fabrication of Nanofluidic Devices Using Glass-to-Glass Anodic Bonding”, Sensors and Actuators, 114, 521-527 (2004)
[10] C. R. Yang, “Research on Soeed and Quality of Anodic Bonding by Appling Arc Discharge”, Chinese Society of Mechanical Engineers (2006)
[11] J. B. Lasky, “Wafer Bonding for Silicon-On-Insulator Techologies”, Applied Physics Letters, 48, 78-80 (1986)
[12] H. Ohashi, “Improved Dielectrically Isolated Device Integration by Silicon-Wafer Direct Bonding(SDB) Technique”, In Proceeding of: Electron Devices Meeting, 32, 210-213 (1986)
[13] C. Rauer, “Hydrophobic direct bonding of silicon reconstructed surfaces”, Microsyst. Technol., 19, 675-679 (2013)
[14] Y. Backlund, A Suggested Mechanism for Silicon Direct Bonding from Studying Hydrophobic Surfaces”, Journal of Micromechanics and Microengineering, 2, 158-160 (1992)
[15] K. W. Yang, “The Study of Al-Ge Thin Films on Package”, National Central University Institutional Repository, (2009)
[16] M. Abouie, “Eutectic and Solid-State Wafer Bonding of Silicon With Gold”, Materials Science and Engineering B, 177, 1748-1758 (2012)
[17] R. F. Wolffenbuttel, “Low-Temperature Intermediate Au-Si Wafer Bonding; eutectic or silicide bond”, Sensors and Actuators A, 62, 680-686 (1997)
[18] Q. Liu, “Localized Si–Au Eutectic Bonding Around Sunken Pad for Fabrication of a Capacitive Absolute Pressure Sensor”, Sensors and Actuators A, 201, 241-245 (2013)
[19] S. Farrens,”Metal Based Wafer Level Packaging”, SUSS Micro. Tec.
[20] J. Fan, “Low Temperature Wafer-Level Metal Thermo-Compression Bonding Technology for 3D Integration”, Metallurgy-Advances in Materials and Processes, 71-94 (2012)
[21] V. Dragoi, “Metal Wafer Bonding for MEMS Devices”, Romanian Journal of Information Science and Technology, 13, 65-72 (2010)
[22] B. Swinnen, “3D Integration by Cu-Cu Thermo-Compression Bonding of Extremely Thinned Bulk-Si Die Containing 10 μm Pitch Through-Si Vias”, Electron Devices Meeting, IEDM ’06. International, 1-4 (2006)
[23] Y. S. Tang, “Wafer-Level Cu–Cu Bonding Technology”, Microelectronics Reliability, 52, 312-320 (2010)
[24] K. N. Chen. “Morphology and Bond Strength of Copper Wafer Bonding”, Electrochemical and Solid-State Letters, 7, G14-G16 (2004)
[25] V. Dragoi, “Adhesive Wafer Bonding for MEMS Applications”, Proceedings of SPIE, 5116, 160-167 (2003)
[26] M. Wiemer, “Wafer Bonding with BCB and SU-8 for MEMS Packaging”, Electronics Systemintegration Technology Conference, 2, 1401-1405 (2006)
[27] J. Q. Lu, “3D Integration Based upon Dielectric Adhesive Bonding”, Integrated Circuits and Systems, Wafer Level 3-D ICs Process Technology, 219-256 (2008)
[28] S. P. Gumfekar, “Polyaniline-Tailored Electromechanical Responses of the Silver/Epoxy Conductive Adhesive Composites”, Journal of Polymer Science Part B: Polymer Physics, 51, 1448-1455 (2013)
[29] R. Xu, ”Microstructures of the eutectic and hypereutectic Al–Ge alloys solidified under different pressures”, Material Letters, 60, 783-785 (2006)
[30] A. J. McAlister, “The Al−Ge (Aluminum-Germanium) System”, Bulletin of Alloy Phase Diagrams, 5, 341-347 (1984)
[31] B. Vu, “Patterned Eutectic Bonding With Al/Ge Thin Films for Microelectromechanical Systems” Journal of Vacuum Science & Technology B, 14, 2588-2594 (1996)
[32] P. M. Zavracky, “Patterned Eutectic Bonding with Al/Ge Thin Films for MEMS”, The International Society for Optical Engineering, 2639, 46-52 (1995)
[33] F. Crnogorac, “Low-temperature Al-Ge Bonding for 3D Integration”, Journal of Vacuum Science and Technology B, 30, 06FK01 - 06FK01-7 (2012)
[34] M. Lane, “Plasticity Contributions to Interface Adhesion in Thin-film Interconnect Structure”, Journal of Materials Research, 15, 2758-2769 (2000)
[35] W. T. Park, “Microstructure and Mechanical Properties of Aluminum–Germanium Eutectic Bonding with Polysilicon Metallization for Microelectromechanical Systems (MEMS) Packaging”, Scripta Materialia, 64, 733-736 (2011)
[36] V. Chidanbaram, “Development of CMOS Compatible Bonding Material and Process for Wafer Level MEMS Packaging Application under Harsh Environment”, International Conference on Solid-State and Integrated Circuit, 32, 136-141 (2012)
[37] I. Perez-Quintana, “An Aluminum-Germanium Eutectic Structure for Silicon Wafer Bonding Technology”, Journal of Physics C: Solid State Physics, 2, 3706-3709 (2005)
[38] G. Raghavan, “Study of Inter-Diffusion and Defect Evolution in Thin Film Al/Ge Bilayers Using SIMS and Positron Beam”, Applied Surface Science, 178, 75-82 (2001)
[39] J. L. Murray, “The Al-Si (Aluminum-Silicon) System”, Bulletin of Alloy Phase Diagrams, 5, 74-84 (1984)
[40] Y. Funamizu, “Interdiffusion in the Al-Cu System”, Materials Transactions: The Japan Institute of Metals and Materials, 12,147-152 (1971)
[41] V. Chidanbaram, “Development of Metallic Hermetic Sealing for MEMS Packaging for Harsh Environment Applications”, Journal of Electronic Materials, 41, 2256-2266 (2012)
[42] C. N. Yeh, “Elucidating the Metal-Induced Crystallization and Diffusion Behavior of Al/a-Ge Thin Films”, Journal of Electronic Materials, 41, 159-165 (2012)
[43] X. H. Huang, “The Effects of Composition and Design of Experiment on the Quality of Al-Ge Eutectic Bonding for Wafer Level Packaging”, ECS Transactions, 50, 151-158 (2012)
[44] P.I. Ross, “Taguchi Techniques for Quality Engineering”, New York: McGraw-Hill, 227 (1992)
[45] F. Crnogorac, “Aluminum-Germanium Eutectic Bonding for 3D Integration”, International 3D System Integration Conference, IEEE (2010)
[46] J. W. Jang, “Direct Correlation between Microstructure and Mechanical Tensile Properties in Pb-free Solders and Eutectic SnPb Solder for Flip Chip Technology”, Applied Physics Letters, 79, 482-483 (2011)
[47] United States Department of Defense, “Die Shear Strength”, Test Method Standard-Microcircuits, MIL-STD-883F Method 2019.7 (2003)
[48] J. Goldstein, “Scanning Electron Microscopy and X-ray Microanalysis”, Plenum Press, New York (1992)
[49] F. Catalina, “Electrical Resistivity and structural changes in amorphous Ge1-xAlx Thin Films under thermal annealing” , Thin Solid Films, 167, 57-65 (1988)
[50] U. Köster, “Crystallization and decomposition of aluminum and germanium films”, Acta Materialia, 20, 1361-1370 (1972)
[51] M. J. Kaufman, “Metastable Phase Production and Transformation in Al-Ge Alloy Films by Rapid Crystallization and Annealing Treatments”, Acta Materialia, 5, 1181-1192 (1987)
[52] T. Laoui, “Nonequilibrium Behavior in the AI-Ge Alloy System: Insights into the Metastable Phase Diagram”, Metallurgical and Materials Transactions A, 22, 2141-2152 (1991)
[53] Y. H. Kim, “Crystallization and High Mechanical Strength of Al-based Amorphous Alloys”, Materials Transactions, 35, 293-302 (1994)