跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蘇姿耘
Zih-Yun Su
論文名稱: 地下停車場自然通風之最佳化設計
Optimal Design of Natural Ventilation for Underground Garages
指導教授: 朱佳仁
Chia-Ren Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 114
中文關鍵詞: 地下停車場自然通風通風豎井建築節能最佳化設計
外文關鍵詞: Underground garage, Natural ventilation, Energy saving, Ventilation shaft, Optimal design
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大多數的地下停車場、地下建築物換氣量不足,往往需要使用通風機械來增加換氣率,以排除場內車輛所排出之廢氣和廢熱,然而通風機械會耗費電力能源。若建築師在設計地下停車場時,可以有效地設計停車場對外的通風口,讓地下室採用自然通風的方式來更新室內空 氣以及自然採光,將可節約大量的電力能源。本研究便是利用風洞實驗、 計算流體力學數值模式 和時間尺度分析探討 自然通風 對於 地下停車場中一氧化碳 污染物 傳輸 的影響 提出計算地下建築物自然通風量的計算方法以及設計通風豎井 、捕風器 之通則, 並 找 出有利於地下停車場採用 自然通風 之最佳 設計,以供建築師設計地下停車場 之參考 。模擬流況以貫流通風為主 ,研究成果顯示當 地下停車場有斜坡車道 以及 通風豎井, 其 通風量最大 建築物內部的 一氧化碳濃度 消散 最 快 其次為 地下 建築物設置捕風器 和 通風豎井 隨著通風豎井數量增加,通風量隨之增加; 反之,當建築物 沒有捕風器, 只設置 垂直地面的 通風豎井, 自然 通風量最低,一氧化碳濃度消散 最 慢 。 地面的建築物可增加地下室的自然通風量,且 當 捕風器和 通風豎井的斷 面積愈大,通風量 會 隨之增加 ,同樣地,也 增加 污 染物濃度 的消散速 率 。


    Most underground parking lots use mechanical ventilation facilities to remove the excessive heat and indoor contaminants while consuming large amounts of electric energy. On the other hand, if the underground car parks are appropriately incorporated natural ventilation into their design, the architect can reduce the energy consumption of the building. This study uses to wind tunnel experiments, a CFD model and time scale analysis to investigate the natural ventilation and concentration field of carbon monoxide in underground garages. The simulation results demonstrate that the underground garage has the highest ventilation rate and the fastest decay rate of carbon monoxide when the garage has a ramp driveway with a ventilation shaft. Alternatively, the ventilation rate is somewhat smaller for underground garages with wind catchers and a ventilation shaft. The ventilation rate is the lowest and decay rate of CO concentration is the smallest when the garage only has vertical ventilation shafts. The ventilation rate will increase when there is a building on the ground. The results of this study can be used to predict the natural ventilation rates of underground garages.

    摘 要 I Abstract II Contents III Chapter 1 Introduction 1 Chapter 2 Numerical Model 9 Chapter 3 Model Validation 12 3.1 Experimental setup 12 3.2 Surface Pressures 12 3.3 CO Concentration 16 Chapter 4 Results and Discussion 19 4.1 Wind Speed Effect 19 4.2 Effect of Ventilation Shaft 21 4.3 Underground Garages with Driveway 23 4.4 Garage with Building on the Ground 24 Chapter 5 Conclusions 26 References 28

    [1] Chow, W. K. (1995). On ventilation design for underground car parks. Tunneling and Underground Space Technology, 10(2), pp.225-245.
    [2] Sandberg, M. (1981). What is ventilation efficiency, Build. and Environ., 16(2), 123-135. doi:10.1016/0360-1323(81)90028-7.
    [3] Kondo, Y., Hajime Y., Imai, C., Tadokoro, Y., and Yokota, Y. (2001). Examination of ventilation properties in underground parking lots by actual measurement and CFD analysis: Study on ventilation properties and ventilation efficiency of underground parking lots Part 1. Architectural Institute of Japan Planning Papers, Vol. 66, No.549, pp.37-44.
    [4] Elmualim, A.A. and Awbi, H.B. (2002). Wind Tunnel and CFD investigation of the performance of “Windcatcher” ventilation systems. International Journal of Ventilation, Vol.1(1), pp.53-64.
    [5] Papakonstantinou, K., Chaloulakou, A., Duci, A., Vlachakis, N., and Markatos, N. (2003). Air quality in an underground garage: computational and experimental investigation of ventilation effectiveness, Energy and Buildings, 35(9), pp.933-940.
    [6] Chen, C.W. (2005) Study on the impact of parking facilities on surrounding air quality in urban areas, Graduate Institute of Architecture and Urban Design, National Taipei University of Technology.
    [7] Jang, H.-I., and Suh, S.-J. (2010). Application of solar chimney system for natural ventilation in underground space, Journal of the Korean Solar Energy Society, Vol.30, (2), pp.87-95.
    [8] Seo, J.-M., Lee, J., Song, J-E., Jung, J.-H., and Song, D. (2011). Strategies to improve the natural ventilation performance at the underground parking lot in multi-residential buildings, Korean Journal of Air-conditioning and Refrigeration Engineering, Vol. 23 (2), pp.153-163. doi:10.6110/KJACR.2011.23.2.153.
    [9] Wang, C.S. (2011) Study of Ventilation Equipment on Air Quality in Underground Parking Lots, Master Thesis for Institute of Safety and Disaster Prevention Technology, Central Taiwan University of Science and Technology, Taichung, Taiwan.
    [10] Yen, Y.M. (2016) Research on Carbon Monoxide and Ventilation System in an Underground Parking Lot, Master Thesis for Department of Energy and Refrigeration and Air Conditioning Engineering, Taipei University of Technology, Taipei City, Taiwan.
    [11] Ahn, S.-J., Kwon, H.-M., Kim, G.-H., & Yang, J.-H. (2016). Study of securing required ventilation rates and improving mechanical ventilation systems for underground parking lots. Journal of Asian Architecture and Building Engineering, Vol.15(3), pp.659-665.
    [12] Kondo, Y. , Hajime Y., Imai, C., Tadokoro, Y., and Yokota, Y. (2001). Examination of ventilation properties in underground parking lots by actual measurement and CFD analysis: Study on ventilation properties and ventilation efficiency of underground parking lots Part 1. Architectural Institute of Japan Planning Papers, Vol. 66, No.549, pp.37-44.
    [13] Porras-Amores, C., Mazarrón, F. R., Cañas, I., and Villoría Sáez, P. (2019). Natural ventilation analysis in underground construction: CFD simulation and experimental validation. Tunneling and Underground Space Technology, Vol. 90, pp.162-173.
    [14] Lin, Y. Y. (2019) CFD simulation of indoor air pollutants in underground parking lots and its ventilation benefits, Master Thesis for Department of Environmental Safety and Health, Ming-Chi University of Technology.
    [15] Shen, Y. D. (2020) Study on Air Quality and Energy Saving Control in Underground Parking Lot, Master Thesis for the Department of Energy and Refrigeration Air Conditioning, National Taipei University of Technology.
    [16] Montazeri, H. (2011). Experimental and numerical study on natural ventilation performance of various multi-opening wind catchers. Build. Environ., Vol.46 (2), pp.370-378.
    [17] Hughes, B. R., Calautit, J. K., and Ghani, S. A. (2012). The development of commercial wind towers for natural ventilation: A review. Applied Energy, Vol.92. pp.606-627. doi.org/10.1016/j.apenergy. 2011.11.066.
    [18] Chu, C.-R., Chiu, Y.H., Chen, YJ, Wang, YW, Chou, C.P. Turbulence effects on the discharge coefficient and mean flow rate of wind-driven cross ventilation, Build Environ. 44 (2009) 2064-2072. doi:10.1016/j.buildenv.2009.02.012
    [19] Chu, C.-R., and Chiang, B.F. (2013) Wind driven cross ventilation with internal obstacles. Energy Build., Vol. 67, pp.201-209. doi:10.1016/j. 2013.07.086.
    [20] Chu, C.-R., and Chiang, B F. (2014) Wind driven cross ventilation in long buildings. Build. Environ., Vol. 80, pp.150-158. doi.org/10.1016/j.buildenv.2014.05. 017.
    [21] Chu, C.-R., and Wang Y.-W. (2010) The loss factors of building openings for wind-driven ventilation. Build. Environ., Vol.45 (10), pp.2273-2279.
    [22] Chu, C.-.R., Wu, S.-L. (2017) A transient transport model for gaseous pollutants in naturally-ventilated partitioned buildings. Building Simulation. Vol.11 (2), 305-313. doi. 10.1007/s12273-017-0390-z.
    [23] Hou C, Gheorghiu S, Huxley VH, Pfeifer P (2010) Reverse engineering of oxygen transport in the lung: adaptation to changing demands and resources through space-filling networks. PLoS Comput Biol6 (8):e1000902. doi:10.1371/ journal. pcbi.
    [24] Tominaga, Y., Stathopoulos, T. (2007) Turbulent Schmidt numbers for CFD analysis with various types of flow field, Atmospheric Environment, Vol. 41 (37), 8091-8099.
    [25] Tominaga, Y., Stathopoulos, T. (2012) CFD modeling of pollution dispersion in building array: evaluation of turbulent scalar flux modeling in RANS model using LES results. J. Wind Eng. Indust. Aerodyn. 104-106, 484-491.
    [26] Tominaga, Y., Mochida, A., Yoshie, R Kataoka, H., Nozu, T., Yoshikawa, M., & Shirasawa, T. (2008) AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J. Wind Eng. Ind. Aerodyn, 96, 1749-1761.
    [27] Ho, J.C., Xue, H, Tay, K.L. (2004) A field study on determination of carbon monoxide level and thermal environment in an underground car park, Build. Environ. Vol. 39(1), pp.67-75. doi:10.1016/j.buildenv.2003.07.006.
    [28] Kato, S. and Murakami, S. (1998) New ventilation efficiency scales based on the spatial distribution of contaminant concentration aided by numerical simulation. ASHRAE Transaction, 94(2): 309-330.
    [29] Ohba, M., Irie, K., Kurabuchi, T. (2001) Study on airflow characteristics inside and outside a cross-ventilation model, and ventilation flow rates using wind tunnel experiments. J. Wind Eng. Ind. Aerodyn. 89, 1513-1524.
    [30] Hu, Cheng-Hu., Ohba, M., Yoshie, Ryuichiro. (2008) CFD modeling of unsteady cross-ventilation flows using LES. J. Wind Eng. Ind. Aerodyn. 96, 1692-1706.
    [31] Deardorff, J. W. (1970). A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. Journal of Fluid Mech., 41(02), 453.
    [32] 武祺皓 (2020) 使用CFD模擬室內巴士轉運站之CO與PM10污染物及其通風換氣效果之探討與改善,明志科技大學環境與安全衛生工程研究碩士論文

    QR CODE
    :::