| 研究生: |
張佑安 Yu-An Chang |
|---|---|
| 論文名稱: |
含雙吡啶三唑配子之金屬有機配位聚合物之自組裝、結構鑑定及性質研究 Self-assembly, Structures, and Properties of Metal:Organic Coordination Polymers with Bis-pyridyl Substituted Triazole Ligand |
| 指導教授: |
呂光烈
Kuang-Lieh Lu 李光華 Kwang-Hwa Lii |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 207 |
| 中文關鍵詞: | 晶體結構 、自組裝 、有機金屬框架 、氣體吸附 |
| 外文關鍵詞: | crystal structure, self-assembly, metal—organic framework, gas adsorption |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文使用過渡金屬離子和 4-amino-3,5-bis(4-pyridyl)-1,2,4-triazole (4-bpt)經
由 自 組 裝 的 方 式 合 成 出 {[Cd(4-bdt)(atpa)(H2O)]·(DMF)(H2O)2}n (1),
{[Cd(4-bdt)(htpa)(H2O)]·DMF}n (2), {[Cd(4-bdt)(ntpa)(H2O)]·DMF}n (3),
{[Zn(4-bdt)(2,5-tdc)]·DMF}n (4), {[Zn(4-bdt)(cca)2]·DMAC}n (5),
{[Cu(4-bdt)2(H2O)]·(DMAC) (EtOH)0.5(H2O)3(NO3)2}n (6)等六個化合物,並以單晶
X-ray 繞射解析其結構,以螢光光譜法及氣體吸附實驗,探討各化合物的物理性
質。
鎘金屬離子和 4-bpt 配子於二甲基甲醯胺和水的混合溶劑中,分別與
2-aminoterephthalic acid (atpa) 、 2-hydroxyterephthalic acid (htpa) 或
2-nitroterephthalic acid (ntpa)以水浴法反應各得到化合物 1-3。化合物 1-3 為相
似的結構,都是以鎘金屬中心形成之二維平面,層與層間藉由氫鍵作用力形成三
維的超分子架構。化合物 1-3 中皆具有一維孔道,故進一步進行氣體吸附性質
之探討。
硝酸鋅金屬鹽類與 4-bpt 配子分別與 2,5-thiophenedicarboxylic acid (2,5-tdc)
或 4-carboxycinnamic acid (cca)兩種不同的羧酸根配子反應,各得到以鋅金屬離
子為基底的化合物 4 或 5,產物經由紅外線光譜、元素分析與單晶 X 光與粉末繞
射儀來鑑定結構,化合物 4 和 5 均為三維結構,其配位模式都非常類似於
paddle-wheel 的形式,兩個鋅金屬離子先與四個羧酸根上的氧原子配位,形成二
維的平面,再由 4-bpt 扮演著 pillar 的角色以氮原子與鋅金屬離子橋接而構成三
維的網狀結構,使化合物 4 和 5 都具有孔洞,此外化合物 4 和 5 都具有互穿的特
性,二氧化碳的氣體吸附性質也一併研究。
化合物 6 則以六配位之銅金屬中心形成二維平面,再透過氫鍵作用力及二次
互穿形成三維的超分子架構。
In this thesis, a series of supramolecular compounds and coordination polymers
were synthesized via self-assembly processes and their structures and properties were
examined.
Compounds {[Cd(4-bdt)(atpa)(H2O)]·(DMF)(H2O)2}n (1),
{[Cd(4-bdt)(htpa)(H2O)]·DMF}n (2), {[Cd(4-bdt)(ntpa)(H2O)]·DMF}n (3),
respectively, were produced by the reaction of cadmium salts,
4-amino-3,5-bis(4-pyridyl)-1,2,4-triazole (4-bpt), and 2-aminoterephthalic acid (atpa),
2-hydroxyterephthalic acid (htpa) or 2-nitroterephthalic acid (ntpa) ligands in a mixture
of DMF/H2O at 50 °C. The structures of compounds 1, 2, and 3 are similar. They are
comprised of two-dimensional structures formed by seven-coordinated metal centers,
and three-dimensional supramolecular structures are formed by hydrogen bonding
interactions between the two-dimensional structures. Because the structure has a
one-dimensional channel, it has gas adsorption characteristics.
A series of zinc-based metal-organic frameworks {[Zn(4-bdt)(2,5-tdc)]·DMF}n
(4), {[Zn(4-bdt)(cca)2]·DMAC}n (5) were synthesized at 50 °C. The structures of the
two products were constructed from paddle-wheel units, which were formed from two
zinc ions, four carboxylates and two pyridine united. The properties of compounds 4
and 5 regarding the uptake of CO2 are also discussed.
The reaction of Cu2+ with 4-bpt in a mixture of DMAC/H2O/EtOH at room
temperature resulted in the formation of {[Cu(4-bdt)2(H2O)]·(DMAC)
(EtOH)0.5(H2O)3(NO3)2}n(6). Compounds 16 were characterized by infrared
spectroscopy (FT-IR), powder X-ray diffraction (PXRD), elemental analysis (EA),
and thermogravimetric analysis (TGA). Their structures were further confirmed by
single-crystal X-ray diffraction analysis.
參考文獻
1. Lehn, J. M. Science 1985, 227, 849–856.
2. Lehn, J. M. Angew. Chem. Int. Ed. 1988, 27, 89–90.
3. Cram, D. J. Angew. Chem. Int. Ed. 1988, 27, 1009–1010.
4. Pedersen, C. J. Angew. Chem. Int. Ed. 1988, 27, 1021–1022.
5. Lehn, J. M. Nobel lecture. 1987.
6. http://2012books.lardbucket.org/books/principlesofgeneralchemistryv1.0/s1502intermolecularforces.html
7. Etler, M. C. Acc .Chem. Res. 1990, 23, 120–126.
8. (a) Desiraju, G. R. Acc. Chem. Res. 1996, 29, 441−449. (b) Hosseini, M. W. Acc. Chem. Res. 2005, 38, 313−323. (c) Trivedi, D. R.; Dastidar, P. Cryst. Growth Des. 2006, 6, 1022−1026. (d) Aakeroy, C. B.; Salmon, D. J.; Smith, M. M.; Desper, J. Cryst. Growth Des. 2006, 6, 1033−1042. (e) Murata, T.; Yakiyama, Y.; Nakasuji, K.; Morita Y. Cryst. Growth Des. 2010, 10, 4898−4905. (f) Orola, L.; Veidis, M. V.; Mutikainen, I.; Sarcevica I. Cryst. Growth Des. 2011, 11, 4009−4016.
9. (a) Janiak, C. J. Chem. Soc., Dalton Trans. 2000, 3885−3896. (b) Ferguson, S. B.; Sanford, E. M.; Seward, E. M.; Diederich, F. J. Am. Chem. Soc. 1991, 113, 5410−5419.
10. Wu, C. D; Hu, A.; Zhang, L.; Lin, W. J. Am. Chem. Soc. 2005, 127, 8940–8941.
11. Lee, J. Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. B. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450–1459.
12. Lu, Z. Z.; Zhang, R.; Li, Y. Z.; Guo, Z. J.; Zheng, H. G. J. Am. Chem. Soc. 2011, 133, 4172–4174.
13. Lu, G.; Hupp, J. T. J. Am. Chem. Soc. 2010, 132, 7832–7833.
14. Wang, R.; Meng, Q.; Zhang, L.; Wang, H.; Dai, F.; Guo, W.; Zhao, L.; Sun, D. Chem. Commun. 2014, 50, 4911−4914.
15. Wang, H. H.; Jia, L. N.; Hou, L.; Shi, W. J.; Zhu, Z.; Wang, Y. Y. Inorg. Chem. 2015, 54, 1841−1846.
16. He, H.; Sun, F.; Jia, J.; Bian, Z.; Zhao, N.; Qiu, X.; Gao, L.; Zhu, G. Cryst. Growth Des. 2014, 14, 4258−4261.
17. (a) Zaworotko, M. J. Chem. Commun. 2001, 19. (b) Abourahma, H.; Moulton, B.; Kravtsov, V.; Zaworotko, M. J. J. Am. Chem. Soc. 2002, 124, 9990−9991. (c) Kitagawa, S.; Kitaura, R.; Noro, S. I. Angew. Chem., Int. Ed. 2004, 43, 2334–2375. (d) Kitagawa, S.; Uemura, K. Chem. Soc. Rev. 2005, 34, 109−119. (e) Yi, L.; Yang, X.; Lu, T.; Cheng, P. Cryst. Growth Des. 2005, 5, 1215−1219. (f) Perry, J. J. th; Perman, J. A.; Zaworotko, M. J. Chem. Soc. Rev. 2009, 38, 1400−1417. (g) Leong, W. L.; Vittal, J. J. Chem. Rev. 2011, 111, 688–764. (h) Vukotic,V. N.; Loeb, S. J. Chem. Soc. Rev. 2012, 41, 5896–5906. (i) Batten, S. R.; Champness, N. R.; Chen, X. M.; GarciaMartinez, J.; Kitagawa, S.; Öhrström, L.; O'Keeffe, M.; Suh, M. P.; Reedijk, J. CrystEngComm. 2012, 14, 3001–3004.
18. Kitagawa, S.; Kitaura, R.; Noro, S. I. Angew. Chem. Int. Ed. 2004, 43, 2334–2375.
19. Ockwig, N. W.; DelgadoFriedrichs, O.; O'Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2005, 38, 176−182.
20. Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z. Science 2012, 336, 1018−1023.
21. Lu, Y. L.; Wu, J. Y.; Chan, M. C.; Huang, S. M.; Lin, C. S.; Chiu, T. W.; Liu, Y. H.; Wen, Y. S.; Ueng, C. H.; Chin, T. M.; Hung, C. H.; Lu, K. L. Inorg. Chem. 2006, 45, 2430−2437.
22. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418−2421.
23. Vaidya,P.D.; Kening, E. Y. Chem. Eng. Technol. 2007, 30, 14671474.
24. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469–470.
25. Rowsell, J. L. C.; Spencr, E. C.; Yaghi, O. M. Science. 2005, 309, 13501354.
26. SolerIllia, G, J, de A. A.; Sanchez, C.; Lebeau, B.; Patarin, J. Chem. Rev. 2002, 102, 40934138.
27. Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998.
28. (a) Zhang, X.-M.; Hao, Z.-M.; Wu, H.-S. Inorg. Chem. 2005, 44, 7301–7302. (b) Ye, B.-H.; Tong, M.-L.; Chen, X.-M. Coord. Chem. Rev. 2005, 249, 545–546. (c) Zhang, L.-Y.; Zhang, J.-P.; Lin, Y.-Y.; Chen, X.-M. Cryst. Growth Des. 2006, 6, 1684–1685.
29. (a) Hennigar, T. L.; MacQuarrie, D. C.; Losier, P.; Rogers, R. D.;Zaworotko, M. J. Angew. Chem., Int. Ed. Engl. 1997, 36, 972–973. (b) Carlucci, L.; Ciani, G.; Macchi, P.; Proserpio, D. M. Chem. Commun. 1998, 1837–1838. (c) Sharma, C. V. K.; Rogers, R. D. Chem. Commun. 1999, 83–84. (d) Wang, Q. M.; Guo, G. C.; Mak, T. C. W. Chem. Commun. 1999, 1849–1850. (e) Brandys, M.C.; Puddephatt, R. J. Chem. Commun. 2001, 1508–1509. (f) Pschirer, N. G.; Curtin, D. M.; Smith, M. D.; Bunz, U. H. F.; Zur Loye, H.-C. Angew. Chem., Int. Ed. 2002, 41, 583–584. (g) Carlucci, L.; Ciani, G.; Proserpio, D. M.; Rizzato, S. CrystEngComm 2003, 5, 190–191. (h) Wenger, O. S.; Henling, L. M.; Day, M. W.; Winkler, J. R.; Gray, H. B. Inorg. Chem. 2004, 43, 2043–2044.
30. Miao, D.; Jiang. X.-J.; Zhao. X.-J. Chem. Commun. 2005, 5521.
31. Fouad B.; Michel L.; Michel Traisnel; Bouchaib Mernari; Hassan Elattari; J. Het. Chem. 2009, 36, 149.