跳到主要內容

簡易檢索 / 詳目顯示

研究生: 高銘澤
Ming-Tse Kao
論文名稱: 靜磁場於癌細胞的生物效應
The static magnetic field-mediated biological effects on cancer cells
指導教授: 陳健章
Chien-Chang Chen
劉淑貞
Shu-Chen Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生物醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 56
中文關鍵詞: 靜磁場鼻咽癌癌細胞
外文關鍵詞: static magnetic field, nasopharyngeal carcinoma
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多文獻指出,細胞生理會受到電場和磁場的電磁力影響。另外,細胞會受磁場不同的
    物理參數而影響癌細胞的生長,如磁場頻率、梯度和強度等。靜磁場常被用於研究特定
    磁場強度下的生物效應,然而靜磁場影響細胞的生理機制仍懸而待解且存在爭議。因此,
    本研究要探討靜磁場如何調控癌細胞生理機制。在本研究中,細胞實驗結果顯示靜磁場
    會調控癌細胞的生長速率及細胞週期。根據細胞生長速率的實驗結果指出,受磁組細胞
    的數量增加一倍所需時間比對照組長。此外,細胞週期的實驗結果顯示在靜磁場(static
    magnetic field,SMF)下暴露 24 小時後,與對照組相比受磁組有更多累積於分裂期的
    比例(% of G2/M,SMF:控制組= 5.50 : 0.25)。在免疫螢光染色及西方點墨法的結
    果發現,受磁組的細胞素 B1 和 E1 表現量上升且受磁組 ATM-NBS1-CHK 信號傳導途徑也
    因磁場而活化。在次世代定序的結果發現,靜磁場主要影響了細胞移動、免疫和發育相
    關基因表現。在活細胞影像分析的結果中發現,暴露於靜磁場下的癌細胞有較多細胞累
    積在有絲分裂期,細胞型態較收縮且周圍突起較短,細胞的移動頻率較高,這顯示靜磁
    場可能影響細胞中微管絲與機動蛋白的組合,使受磁組的細胞附著能力較差。在斑馬魚
    生物毒性測試結果中也發現,靜磁場影響了黑色素的移動和生成,但控制組和受磁組於
    受孕後 96 小時之生長率,以及幼魚的外型並沒有明顯差異。本研究意旨在理解靜磁場
    調控的癌細胞效應,並評估利用此生物效應的特點,作為輔助性療法的潛能


    Previous reports have demonstrated that exposure of electromagnetic force could affect
    cellular physiology. Others have shown that static magnetic field (SMF) has impacts on cell
    proliferation, particularly in cancer cells. Several physical parameters, such as magnetic
    frequency, gradient, and magnitude, were reported to affect the biological consequences.
    However, discrepancies exist between the SMF and cancer cell responses and the mechanisms
    underlying the SMF-mediated effects remained largely unexplored. The main purpose of this
    study is to investigate the mechanisms of SMF-mediated effects in cancer cells. Our results
    showed that the exposure of SMF affected cancer cell proliferation and cell cycle distribution.
    The doubling time for cells exposed to SMF was longer than that of control group. The results
    of flow cytometry showed that SMF induced higher percentage of cells accumulated in the
    mitotic phase compared to that of control group after 24-hour exposures (% of G2/M,SMF:
    control= 5.50 : 0.25). Results of immune-fluorescent staining and western blotting found
    higher expressions of cyclin B1 and cyclin E1 SMF-treated cells. Furthermore, the activation
    of ATM-NBS1-CHK signaling pathway was enhanced. The results of Next Generation
    Sequencing (NGS) analysis showed that the SMF primarily regulated genes involved in
    functions of motility, immune and embryonic development related pathways. From the
    time-lapse fluorescent microscope observations, more cancer cells exposed to SMF were
    accumulated in mitotic phase. The SMF-treated cells exhibited a shrinkage phenotype, faster
    motion frequency, and shorter peripheral protrusions. These observations indicate that the
    v

    SMF may affect polymerizations of microtubules and F-actin, as well as cell adhesion. To test
    the SMF-mediated effects on development, we used zebrafish as the model and evaluated the
    phenotypic alterations during development. We found that SMF exposures evidently affected
    the distribution of melanin. Some embryonic malformations were also observed under SMF
    treatment. However, there’s no difference on the survival ratio between SMF-treated group
    and control group. The presented study helps to understand more molecular mechanisms of
    the SMF-mediated effects on cancer cells. This may provide an opportunity to utilize the
    features of SMF to tailor therapeutic strategy.

    目錄 中文摘要 ………………………………………………………………………… iii 英文摘要 ………………………………………………………………………… iv 誌謝 ………………………………………………………………………… vi 目錄 ………………………………………………………………………… vii 縮寫一覽表 ………………………………………………………………………… x Chapter 1 Introduction…………………………………………………………… 1 1-1 Electromagnetic fields in nature……………………………………… 1 1-1-1 Tumor treating fields………………………………………………… 2 1-1-2 Electromagnetic field in environments……………………………… 3 1-1-3 Static magnetic field and human health……………………………… 4 1-2 Static magnetic field at the cellular level……………………………… 6 1-2-1 Static magnetic field and cellproliferation………………………… 6 1-2-2 The potential mechanisms of static magnetic field…………………… 7 Chapter 2 Materials and Methods……………………………………………… 9 2-1 Static magnetic field generated by Neodymium magnet…………… 9 2-2 Cell culture and treatment method…………………………………… 9 2-3 Cell cycle analysis…………………………………………………… 9 2-4 Time-lapse live cell imaging………………………………………… 10 2-5 Wound healing assay………………………………………………… 10 2-6 Real-time proliferation assay………………………………………… 11 2-7 Western blotting……………………………………………………… 11 2-8 Immunofluorescent staining………………………………………… 12 2-9 RNA sequencing and quantification………………………………… 12 2-9-1 RNA extraction and RNA sequencing………………………………… 12 2-9-2 Transcriptome analysis……………………………………………… 13 2-9-3 Real time quantitative polymerase chain reaction…………………… 13 2-10 Zebrafish toxicity assay……………………………………………… 14 2-11 Statistics analysis…………………………………………………… 14 Chapter 3 Results………………………………………………………………… 16 3-1 Distribution of Neodymium magnet flux…………………………… 16 3-2 SMF decreases cancer cell proliferation……………………………… 16 3-3 SMF induces cell cycle redistribution and M phase arrest…………… 17 3-4 SMF induces DNA damage response………………………………… 17 3-5 The top scoring pathways dysregulated by SMF……………………… 18 3-6 Validation of selected genes involved in cell motility………………… 18 3-7 SMF affects cell mobility…………………………………………… 19 3-8 SMF reduces melanin production and migration during development of zebrafish…………………………………………………………… 20 Chapter 4 Discussion…………………………………………………………… 21 4-1 Possible mechanisms under SMF exposures………………………… 21 4-1-1 SMF induces DNA damage response in NPC cells…………………… 21 4-1-2 SMF exposure results in M phase arrest……………………………… 22 4-1-3 SMF regulates cell proliferation………………………………… 22 4-1-4 SMF decreases the cell motility……………………………………… 23 4-1-5 Zebrafish as a model for SMF toxicity tests……………………… 24 4-2 Future perspectives…………………………………………………… 24 Figures ………………………………………………………………………… 26 Figure 1 Characterization of SMF flux………………………………………… 26 Figure 2 The vectors of SMF distribution……………………………………… 27 Figure 3 SMF decreases cancer cell proliferation…………………………… 28 Figure 4 SMF induces cell cycle redistribution and M phase arrest…………… 29 Figure 5 SMF activates DNA damage response……………………………… 30 Figure 6 The top scoring pathways dysregulated by SMF…………………… 31 Figure 7 Expression patterns of genes under SMF exposures………………… 32 Figure 8 Validation of selected genes involved in cell motility……………… 33 Figure 9 SMF affects cell mobility…………………………………………… 34 Figure 10 SMF reduces melanin production and migration during development of zebrafish…………………………………………………………… 35 Appendix Housing of zebrafish for toxicity assay………………………36 References ………………………………………………………………………… 37

    Reference
    1. Zakharchenko, A., Guz, N., Laradji, A.M., Katz, E., and Minko, S. 2018. Magnetic
    field remotely controlled selective biocatalysis. Nature Catalysis 1:73.
    2. Wong, W., Gan, W.L., Teo, Y.K., and Lew, W.S. 2018. Interplay of cell death signaling
    pathways mediated by alternating magnetic field gradient. Cell death discovery
    4:49-49.
    3. Colbert, A.P., Markov, M.S., and Souder, J.S. 2008. Static magnetic field therapy:
    dosimetry considerations. The Journal of Alternative and Complementary Medicine
    14:577-582.
    4. Zhang, Y., Wei, F., Poh, Y.-C., Jia, Q., Chen, J., Chen, J., Luo, J., Yao, W., Zhou, W.,
    and Huang, W. 2017. Interfacing 3D magnetic twisting cytometry with confocal
    fluorescence microscopy to image force responses in living cells. Nature protocols
    12:1437.
    5. Bininda-Emonds, O.R., Cardillo, M., Jones, K.E., MacPhee, R.D., Beck, R.M.,
    Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L., and Purvis, A. 2007. The delayed
    rise of present-day mammals. Nature 446:507.
    6. Clarke, D., Whitney, H., Sutton, G., and Robert, D. 2013. Detection and learning of
    floral electric fields by bumblebees. Science 340:66-69.
    7. Liang, C.-H., Chuang, C.-L., Jiang, J.-A., and Yang, E.-C. 2016. Magnetic sensing
    38

    through the abdomen of the honey bee. Scientific reports 6:23657.
    8. Foley, L.E., Gegear, R.J., and Reppert, S.M. 2011. Human cryptochrome exhibits
    light-dependent magnetosensitivity. Nature communications 2:356.
    9. Aragonès, A.C., Haworth, N.L., Darwish, N., Ciampi, S., Bloomfield, N.J., Wallace,
    G.G., Diez-Perez, I., and Coote, M.L. 2016. Electrostatic catalysis of a Diels–Alder
    reaction. Nature 531:88.
    10. Mehta, M., Wen, P., Nishikawa, R., Reardon, D., and Peters, K. 2017. Critical review
    of the addition of tumor treating fields (TTFields) to the existing standard of care for
    newly diagnosed glioblastoma patients. Critical reviews in oncology/hematology
    111:60-65.
    11. Kessler, A.F., Frömbling, G.E., Gross, F., Hahn, M., Dzokou, W., Ernestus, R.-I., Löhr,
    M., and Hagemann, C. 2018. Effects of tumor treating fields (TTFields) on
    glioblastoma cells are augmented by mitotic checkpoint inhibition. Cell death
    discovery 5:12.
    12. Long, Y., Wei, H., Li, J., Yao, G., Yu, B., Ni, D., Gibson, A.L., Lan, X., Jiang, Y., and
    Cai, W. 2018. Effective Wound Healing Enabled by Discrete Alternative Electric
    Fields from Wearable Nanogenerators. ACS nano 12:12533-12540.
    13. Stupp, R., Taillibert, S., Kanner, A., Read, W., Steinberg, D.M., Lhermitte, B., Toms,
    S., Idbaih, A., Ahluwalia, M.S., and Fink, K. 2017. Effect of tumor-treating fields plus
    39

    maintenance temozolomide vs maintenance temozolomide alone on survival in
    patients with glioblastoma: a randomized clinical trial. Jama 318:2306-2316.
    14. Sienkiewicz, Z. 2013. International Workshop on Non‐Ionizing Radiation Protection
    in Medicine. Medical physics 40.
    15. Lu, Y., Worrell, G.A., Zhang, H.C., Yang, L., Brinkmann, B., Nelson, C., and He, B.
    2014. Noninvasive imaging of the high frequency brain activity in focal epilepsy
    patients. IEEE Transactions on Biomedical Engineering 61:1660-1667.
    16. Brain, J.D., Kavet, R., McCormick, D.L., Poole, C., Silverman, L.B., Smith, T.J.,
    Valberg, P.A., Van Etten, R., and Weaver, J.C. 2003. Childhood leukemia: electric and
    magnetic fields as possible risk factors. Environmental Health Perspectives
    111:962-970.
    17. Tao, R., and Huang, K. 2011. Reducing blood viscosity with magnetic fields. Physical
    Review E 84:011905.
    18. Vallbona, C., Hazlewood, C.F., and Jurida, G. 1997. Response of pain to static
    magnetic fields in postpolio patients: a double-blind pilot study. Archives of physical
    medicine and rehabilitation 78:1200-1203.
    19. Alfano, A.P., Taylor, A.G., Foresman, P.A., Dunkl, P.R., McConnell, G.G., Conaway,
    M.R., and Gillies, G.T. 2001. Static magnetic fields for treatment of fibromyalgia: a
    randomized controlled trial. The Journal of Alternative & Complementary Medicine
    40

    7:53-64.
    20. Juhász, M., Nagy, V.L., Székely, H., Kocsis, D., Tulassay, Z., and László, J.F. 2014.
    Influence of inhomogeneous static magnetic field-exposure on patients with erosive
    gastritis: a randomized, self-and placebo-controlled, double-blind, single centre, pilot
    study. Journal of The Royal Society Interface 11:20140601.
    21. Colbert, A.P., Wahbeh, H., Harling, N., Connelly, E., Schiffke, H.C., Forsten, C.,
    Gregory, W.L., Markov, M.S., Souder, J.J., and Elmer, P. 2009. Static magnetic field
    therapy: a critical review of treatment parameters. Evidence-based complementary and
    alternative medicine 6:133-139.
    22. Polyakova, T., Zablotskii, V., and Dejneka, A. 2017. Cell membrane pore formation
    and change in ion channel activity in high-gradient magnetic fields. IEEE Magnetics
    Letters 8:1-5.
    23. Ghibelli, L., Cerella, C., Cordisco, S., Clavarino, G., Marazzi, S., De Nicola, M.,
    Nuccitelli, S., D'alessio, M., Magrini, A., and Bergamaschi, A. 2006. NMR exposure
    sensitizes tumor cells to apoptosis. Apoptosis 11:359-365.
    24. Fanelli, C., Coppola, S., Barone, R., Colussi, C., Gualandi, G., Volpe, P., and Ghibelli,
    L. 1999. Magnetic fields increase cell survival by inhibiting apoptosis via modulation
    of Ca2+ influx. The FASEB journal 13:95-102.
    25. Pacini, S., Gulisano, M., Peruzzi, B., Sgambati, E., Gheri, G., Bryk, S.G., Vannucchi,
    41

    S., Polli, G., and Ruggiero, M. 2003. Effects of 0.2 T static magnetic field on human
    skin fibroblasts. Cancer detection and prevention 27:327-332.
    26. Gioia, L., Saponaro, I., Bernabo, N., Tettamanti, E., Mattioli, M., and Barboni, B.
    2013. Chronic exposure to a 2 mT static magnetic field affects the morphology, the
    metabolism and the function of in vitro cultured swine granulosa cells.
    Electromagnetic biology and medicine 32:536-550.
    27. Wang, J., Xiang, B., Deng, J., Freed, D.H., Arora, R.C., and Tian, G. 2016. Inhibition
    of viability, proliferation, cytokines secretion, surface antigen expression, and
    adipogenic and osteogenic differentiation of adipose-derived stem cells by seven-day
    exposure to 0.5 T static magnetic fields. Stem cells international 2016.
    28. Stolfa, S., Skorvanek, M., Stolfa, P., Rosocha, J., Vasko, G., and Sabo, J. 2007. Effects
    of static magnetic field and pulsed electromagnetic field on viability of human
    chondrocytes in vitro. Physiological research 56:S45.
    29. Martino, C.F., Perea, H., Hopfner, U., Ferguson, V.L., and Wintermantel, E. 2010.
    Effects of weak static magnetic fields on endothelial cells. Bioelectromagnetics:
    Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in
    Biology and Medicine, The European Bioelectromagnetics Association 31:296-301.
    30. Chuo, W., Ma, T., Saito, T., Sugita, Y., Maeda, H., Zhang, G., Li, J., Liu, J., and Lu, L.
    2013. A preliminary study of the effect of static magnetic field acting on rat bone
    42

    marrow mesenchymal stem cells during osteogenic differentiation in vitro. Journal of
    Hard Tissue Biology 22:227-232.
    31. Denegre, J.M., Valles, J.M., Lin, K., Jordan, W., and Mowry, K.L. 1998. Cleavage
    planes in frog eggs are altered by strong magnetic fields. Proceedings of the National
    Academy of Sciences 95:14729-14732.
    32. Sullivan, K., Balin, A.K., and Allen, R.G. 2011. Effects of static magnetic fields on the
    growth of various types of human cells. Bioelectromagnetics 32:140-147.
    33. Papatheofanis, F.J. 1990. Use of calcium channel antagonists as magnetoprotective
    agents. Radiation research 122:24-28.
    34. Prasad, A., Teh, D.B.L., Blasiak, A., Chai, C., Wu, Y., Gharibani, P.M., Yang, I.H.,
    Phan, T.T., Lim, K.L., and Yang, H. 2017. Static magnetic field stimulation enhances
    oligodendrocyte differentiation and secretion of neurotrophic factors. Scientific reports
    7:6743.
    35. Luo, Y., Ji, X., Liu, J., Li, Z., Wang, W., Chen, W., Wang, J., Liu, Q., and Zhang, X.
    2016. Moderate intensity static magnetic fields affect mitotic spindles and increase the
    antitumor efficacy of 5-FU and Taxol. Bioelectrochemistry 109:31-40.
    36. Zhang, L., Wang, J., Wang, H., Wang, W., Li, Z., Liu, J., Yang, X., Ji, X., Luo, Y., and
    Hu, C. 2016. Moderate and strong static magnetic fields directly affect EGFR kinase
    domain orientation to inhibit cancer cell proliferation. Oncotarget 7:41527.
    43

    37. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. 1995.
    Stages of embryonic development of the zebrafish. Developmental dynamics
    203:253-310.
    38. Tajik, A., Zhang, Y., Wei, F., Sun, J., Jia, Q., Zhou, W., Singh, R., Khanna, N.,
    Belmont, A.S., and Wang, N. 2016. Transcription upregulation via force-induced
    direct stretching of chromatin. Nature materials 15:1287.
    39. Le, H.Q., Ghatak, S., Yeung, C.-Y.C., Tellkamp, F., Günschmann, C., Dieterich, C.,
    Yeroslaviz, A., Habermann, B., Pombo, A., and Niessen, C.M. 2016. Mechanical
    regulation of transcription controls Polycomb-mediated gene silencing during lineage
    commitment. Nature cell biology 18:864.
    40. Le, Q.-H. 2016. Mechanisms of force-mediated regulation of transcription, chromatin
    remodeling and cell fate decisions. Universität zu Köln

    QR CODE
    :::