跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝怡凱
Yi-Kai Hsieh
論文名稱: 運用西蜜斯衛星資料研究低頻帶升調合唱波的重複發生週期之分布
An analysis of distributions of the repetition period of lower-band rising-tone chorus waves using THEMIS observations
指導教授: 許志浤
Jih-Hong Shue
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 79
中文關鍵詞: 合唱波重複發生週期內磁層
外文關鍵詞: Chorus waves, Repetition period, Inner magnetosphere
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 合唱波在地球內磁層產生,受高能電子漂移路徑影響,其主要發生在電漿球層外、磁層頂以內的近磁赤道區域,合唱波產生之後會沿著磁力線傳播,並會與當地的電子進行交互作用,進而加速電子。連續出現的分立波元是合唱波的特徵,分立波元出現的時間差稱為重複發生週期。本研究中使用西蜜斯衛星的高時間解析度磁場資料觀測資料來探討低頻帶升調合唱波的重複發生週期在空間分布上的變化,並研究重複發生週期與相關磁層中背景參數之關係。研究發現在夜側和晨側區域的合唱波重複發生週期分布較集中,平均值也較小,分別為0.56和0.54秒,而日側和昏側區域的重複發生週期分布較廣,週期有長有短,其平均值約為夜側和晨側的2倍。將重複發生週期與背景電漿參數比較後,發現電子溫度是影響各區域重複發生週期變化的因素之一,當電子溫度越低時,該區域的重複發生週期分布越廣。本研究的統計結果將有助於研究合唱波與電子之間交互作用的模擬。


    Whistler-mode chorus waves most likely occur in the dayside, dawnside, and nightside sectors of the inner magnetosphere owing to the co-location of the drift trajectories of energetic electrons. When the chorus waves are excited by electron anisotropy in the minimum magnetic field region, they propagate along the field lines, possibly interacting with charged particles under some resonance conditions. The most noticeable property of chorus waves is discrete elements. The repetition period of chorus waves is defined as the generation time delay between two consecutive discrete chorus elements. Here we utilize in situ high-resolution magnetic fields from the THEMIS mission to obtain distributions of the repetition period of chorus elements for various local time sectors. These distributions have a peak at lower repetition periods and a long tail at higher repetition periods. We find that the average repetition periods for the dawnside (3 < MLT < 9) and the nightside (21 < MLT < 3) sectors are 0.54 and 0.56 s, respectively. The repetition periods for the dayside (9 < MLT<15) and the duskside (15 < MLT < 21) sectors are about two times of those for the dawnside and nightside sectors. Temperature might be the factor that affect the variability range of repetition period. The variability range of repetition period is wider when the resonating electrons have lower temperature. The distributions derived from this study are important to a modeling of wave-particle interactions for radiation belt electrons.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 VIII 符號說明 IX 一、 緒論 1 1-1 簡介 1 1-2 研究動機 1 1-3 論文架構 2 二、 合唱波理論背景介紹 4 2-1 地球磁層介紹 4 2-2 內磁層及范艾倫輻射帶 7 2-3 哨聲模合唱波Whistler-mode Chorus Wave 12 2-4 過去的研究 16 三、 資料分析 21 3-1 資料介紹 21 3-1-1 西蜜斯衛星 21 3-1-2 西蜜斯科學儀器介紹 23 3-1-3 SYM-H 指數 25 3-1-4 AE 指數 26 3-2 資料處理方法 28 3-2-1 短時距傅立葉轉換 28 3-3 資料分析步驟 31 3-3-1 挑選低頻帶升調合唱波事件 31 3-3-2 判定合唱波重複發生週期 35 四、 資料分析結果與討論 37 4-1 合唱波事件分布 37 4-1-1 合唱波事件位置分布 37 4-1-2 合唱波事件地磁擾動指數分布 39 4-2 合唱波重複發生週期統計 41 4-2-1 所有事件統計 41 4-2-2 區域事件統計 44 4-2-3 正規化重複發生週期統計 47 4-3 重複發生週期與背景參數比較 49 4-3-1 分區域比較各項參數 49 五、 結論及未來展望 53 5-1 結論 53 5-2 未來展望 53 參考文獻 55 附錄一 GSM座標系統 58 附錄二 SM座標系統 59 附錄三 Whistler-mode wave頻散關係式推導 60

    Auster, H.U., K. H. Glassmeier, W. Magnes, O. Aydogar, D. Constantinescu, D. Fischer, K. H. Fornacon, E. Georgescu, P. Harvey, O. Hillenmaier, R. Kroth, M. Ludlam, Y.Narita, K. Okrafka, F. Plaschke, I. Richter, H. Schwarzi, B. Stoll, A. Valavanoglu, and M. Wiedemann, (2008). The THEMIS fluxgate magnetometer, Space Sci. Rev., 141, 235-264, doi:10.1007/s11214-008-9365-9.
    Bonnell, J., F. Mozer, G. Delory, A. Hull, R. Ergun, C. Cully, V. Angelopoulos, and P. Harvey (2008), The Electric Field Instrument (EFI) for THEMIS, Space Sci. Rev., 141(1-4), 303–341, doi:10.1007/s11214-008-9469-2.
    Bortnik, J., R. M. Thorne, and N. P. Meredith (2008), The unexpected origin of plasmaspheric hiss from discrete chorus emissions, Nature, 452(7183), 62-66.
    Burtis, W., and R. Helliwell (1969), Banded chorus—A new type of VLF radiation observed in the magnetosphere by OGO 1 and OGO 3, J. Geophys. Res., 74(11), 3002-3010.
    Iyemori, T., M. Takeda, M. Nose, Y. Odagi and H. Toh, M. (2009), Mid-latitude Geomagnetic Indices ASY and SYM (Provisional) No. 20, WDC for Geomagnetism, Kyoto.
    Kennel, C. F., and H. Petschek (1966), Limit on stably trapped particle fluxes, J. Geophys. Res., 71(1), 1–28., doi:10.1029/JZ071i001p00001.
    Keika, K., M. Spasojevic, W. Li, J. Bortnik, Y. Miyoshi, and V. Angelopoulos (2012), PENGUIn/AGO and THEMIS conjugate observations of whistler mode chorus waves in the dayside uniform zone under steady solar wind and quiet geomagnetic conditions, J. Geophys. Res., 117, A07212, doi:10.1029/2012JA017708.
    Kivelson, M.G., and Russell, C.T. (1995), Introduction to Space Physics, Cambridge University Press, New York.
    Li, W., R. M. Thorne, V. Angelopoulos, J. Bortnik, C. M. Cully, B. Ni, O. LeContel, A. Roux, U. Auster, and W. Magnes (2009), Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft, Geophys. Res. Lett., 36, L09104, doi:10.1029/2009GL037595.
    Li, W., R. M. Thorne, J. Bortnik, Y. Nishimura, and V. Angelopoulos (2011a), Modulation of whistler mode chorus waves: 1. Role of compressional Pc4–5 pulsations, J. Geophys. Res., 116, A06205, doi:10.1029/2010JA016312.
    Li, W., J. Bortnik, R. M. Thorne, Y. Nishimura, V. Angelopoulos, and L. Chen (2011b), Modulation of whistler modechorus waves: 2. Role of density variations, J. Geophys. Res., 116, A06206, doi:10.1029/2010JA016313.
    Li, W., R. M. Thorne, J. Bortnik, Y. Y. Shprits, Y. Nishimura, V. Angelopoulos, C. Chaston, O. Le Contel, and J. W.Bonnell (2011c), Typical properties of rising and fallingtone chorus waves, Geophys. Res. Lett., 38, L14103, doi:10.1029/2011GL047925.
    McFadden, J.P., C.W. Carlson, D. Larson, V. Angelopoulos., M. Ludlam, R. Abiad, B. Elliott, P. Turin, and M. Marckwordt (2008), The THEMIS ESA plasma instrument and in-flight calibration, Space Sci. Rev., 141, 277–302, doi:10.1007/s11214-008-9440-2.
    Omura, Y., and D. Summers (2006), Dynamics of high-energy electrons interacting with whistler mode chorus emissions in the magnetosphere, J. Geophys. Res., 111, A09222, doi:10.1029/2006JA011600.
    Omura, Y., Y. Katoh, and D. Summers (2008), Theory and simulation of the generation of whistler-mode chorus, J. Geophys. Res., 113, A04223, doi:10.1029/2007JA012622.
    Omura, Y., M. Hikishima, Y. Katoh, D. Summers, and S. Yagitani (2009), Nonlinear mechanisms of lower-band and upper-band VLF chorus emissions in the magnetosphere, J. Geophys. Res., 114, A07217, doi:10.1029/2009JA014206.
    Roux, A., O. Le Contel, C. Coillot, A. Bouabdellah, B. De La Porte, D. Alison, S. Ruocco, and M.-C. Vassal (2008), The search coil magentometer for THEMIS, Space Sci. Rev., 141, 265–275, doi:10.1007/s11214-008-9455-8.
    Russell, C.T. and J. G. Luhmann (1997), Earth: magnetic field and magnetosphere, in Encyclopedia of Planetary Sciences, pp. 208–211, Chapman and Hall, New York
    Santolik, O., Gurnett, D. A., and Pickett, J. S.: Spatio-temporal structure of storm time chorus, J. Geophys. Res., 108, 1278, doi:10.1029/2002JA009791, 2003.
    Sazhin, S. S., and M. Hayakawa (1992), Magnetospheric chorus emissions: A review, Planet. Space Sci., 40(5), 681–697.
    Tao, X., W. Li, J. Bortnik, R. M. Thorne, and V. Angelopoulos (2012), Comparison between theory and observation of the frequency sweep rates of equatorial rising tone chorus, Geophys. Res. Lett., 39, L08106, doi:10.1029/2012GL051413.
    Thorne, R. M., B. Ni, X. Tao, R. B. Horne, and N. P. Meredith (2010), Scattering by chorus waves as the dominant cause of diffuse auroral precipitation, Nature, 467(7318), 943–946.
    Thorne, R. M (2010), Radiation belt dynamics: The importance of wave‐particle interactions, Geophys. Res. Lett., 37, L22107, doi:10.1029/2010GL044990.
    Trakhtengerts, V. Y. (1999), A generation mechanism for chorus emission, Ann. Geophys., 17, 95–100.
    Trakhtengerts, V. Y., A. G. Demekhov, E. E. Titova, B. V. Kozelov, O. Santolik, D. Gurnett, and M. Parrot (2004), Interpretation of Cluster data on chorus emissions using the backward wave oscillator model, Phys. Plasmas, 11(4), 1345–1351.

    QR CODE
    :::