| 研究生: |
廖偉鈞 Wei-Chun Liao |
|---|---|
| 論文名稱: |
無網格局部皮得洛夫葛勒金法 Meshless Local Petrov-Galerkin Method |
| 指導教授: |
鄔蜀威
Shu-Wei Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 無網格局部皮得洛夫葛勒金法 、變動最小平方法 |
| 外文關鍵詞: | meshless local petrov-galerkin method, moving least square method |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本文主要是在介紹無網格局部皮得洛夫葛勒金法(簡稱MLPG)分析彈性靜力問題,MLPG是利用變動最小平方法(簡稱MLS)來建立形狀函數,MLPG有著需要引入必要邊界條件的問題,根據原本由Atluri等人所提出的MLPG是利用懲罰法來引入必要邊界條件。MLPG是一完全無需有限元素建立的無網格法,也不用設置基底網格。MLPG之加權殘值定理積分式是侷限在一節點之局部的規則形狀區域(一般二維為:矩型、圓形,三維為:立方體、球型)以及邊界中求得。MLPG是較穩定的因為是利用局部加權殘值定理積分式。本文中也包含3項數值算例來分析不同情況下的彈性靜力問題,可以顯示MLPG法在分析彈性靜力時有著相當的效率以及精確度。最後本文也附上了程式可以方便日後對MLPG法之研究。
ABSTRACT
In this essay, the Meshless Local Petrov-Galerkin (MLPG) method for solving problems in elasto-statics is developed and numerically implemented. Moving least squares approximation is employed for constructing shape functions. There is an issue of imposition of essential boundary conditions. The original MLPG proposed by Atluri et al. uses the penalty method. MLPG does not need any finite element mesh, it is a truly meshless method. The major idea in MLPG is, however, that the implementation of the integral form of the weighted residual method is confined to a very small local subdomain of a node. The MLPG is more sable due to the use of locally weighted residual integration. In this essay, there are three numerical examples to analyze the problem in elasto-statics in different situations. it shows MlPG is quite efficient and accuracy in analyzing the problem in elasto-statics. In the end of this essay, the program to study MLPG is enclosed.
參考文獻
1. Lucy L. B. (1977) “A numerical approach to the testing of the fission hypothesis,” The Astron. J, 8(12), pp. 1013-1024
2. Gingold R A, Monaghan J J. (1977) “Smoohed particle hydrodynamics: theory and application to non-spherical stars,” Mon. Not. Roy. Astrou. Soc., Vol. 18 pp. 375~389
3. Benz W. (1990) “Smooth particle hydrodynamics: a review. In: Buchler J R ed,” The Numerical Modeling of Stellar Pulsation. Dordrecht: Kluwer, 269
4. Lancaster P, Salkauskas K.(1981) Surfaces generated by moving least squares methods. Math. Comput., Vol. 37(155) pp. 141~158
5. Nayroles B, Touzot G., Villon P. (1992) “Generalizing the finite element method: diffuse approximation and diffuse elements,” Comput. Mech., Vol. 10 pp. 307-318
6. Belytschko T., Lu Y. Y. (1994) “Element free Galerkin method,” Int. J. Num. Meth Engng., Vol. 37, pp. 229-256
7. Chung H. J., Belytschko T. (1998) “An error estimate in the EFG method,” Comput. Mech., Vol. 21, pp. 91-100
8. Dolbow J., Belytschko T. (1999) “Numerical integration of the Galerkin weak form in meshfree methods,” Comput. Mech., Vol. 23, pp. 219-230
9. Belytschko T, Krongauz Y., Organ D., et al. (1996) “Smoothing and acclerated computions in the element free Galerkin method,” J. Comput. Appl. Math, Vol. 74, pp. 111-126
10. Krongauz Y , Belytschko T. (1998) “EFG approximation with discontinuous derivatives,” Int. J. Num. Meth. Engng., Vol. 41, pp. 1215~1233
11. Krysl P, Belytschko T. (1995) “Analysis of thin shells by element-free Galerkin method,” Comput. Mech., Vol. 17, pp. 186~195
12. Liu W K, Jun S., Zhang Y. F. (1995) “Reproducing Kernel Particle methods,” Int. J. Num. Meth. Fluids, Vol. 20, pp. 1081-1106
13. Liu W K, Chen Y, Jun S et al. (1996) “Overview and applications of the reproducing kernel particle methods,” Archives of Computational Method in Engineering, State of the art review, 3(1): 3~80
14. Duarte C A, Oden J T. (1995) Hp clouds: a meshless method to solve boundary-value problem Technical Report 95-105. Texas Institute for Computational and Applied Mathematics. University of Taxes at Austin.
15. Duarte C A, Oden J T. (1996) “Hp clouds: a h-p meshless method,” Numerical Methods for Partical Differential Equations, Vol.12, pp. 673~705
16. Duarte C A, Oden J T. (1996) “An h-p adaptive method using clouds,” Comput Methods Appl. Mech. Engrg., Vol.139, pp. 237~262
17. Melenk J M, Babuska I. (1996) “The partition of unity finite element methods: Basic theory and application,” Comput. Methods Appl. Mech. Engrg., 139: 263~288
18. Babuska I, Melenk J M. (1997) “The partition of unity methods,” Int. J. Num. Mech. Engng., Vol.40, pp. 727~758
19. Zhu T, Zhang J, Atluri S N. (1998) “A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach,” Comput. Mech, Vol. 21, pp. 223-235
20. Zhu T, Zhang J, Atluri S N. (1998) “A meshless local boundary integral equation (LBIE) method for solving nonlinear problems,” Compute. Mech., Vol.22, pp. 174~186
21. Atluri S N, Sladek V et al. (2000) “The Local boundary integral equation (LBIE) and it’s meshless implementation for linear elasticity,” Comput. Mech., Vol.25, pp. 180~198
22. Atluri S. N., Zhu T. (1998) “A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics,” Comput. Mech, Vol. 22, pp. 117-127
23. Atluri S. N., Zhu T. (2000) “The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics,” Comput. Mech., Vol.25, pp. 169~179
24. Liu G. R.., Gu Y. T. (2000) “Meshless Local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approachs,” Comput. Mech, Vol. 26, pp. 536-546
25. Liu G. R. (2002) Mesh Free Method: Moving Beyond the Finite Element Method, CRC Press, New York