跳到主要內容

簡易檢索 / 詳目顯示

研究生: 薛喻仁
Yu-Ren Syue
論文名稱: 仿健康與異位性皮膚炎角質層的相轉移材料是否與身體熱傳導和熱保護有關?
Are Biomimetic Lipid Lamellae of Healthy and Atopic Eczema Stratum Corneum Phase Change Materials for Body Heat Conductivity and Thermal Protection?
指導教授: 李度
Tu Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 129
中文關鍵詞: 小角度X光散射儀相轉移材料角質層
外文關鍵詞: SAXS, phase change material, stratum corneum
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 皮膚為哺乳類動物最外層的器官,角質層位於皮膚的最外層,幾乎沒有人有做過關於角質層熱性質的研究,我們使用棕櫚酸、膽固醇,和神經胺酸模仿健康皮膚的角質層比例(重量百分比:棕櫚酸/膽固醇/神經胺酸=1/1/2),經由熔融法來製備油脂混合物,利用低溫熱分析儀來找出最穩定且有重複性的循環,以此循環作為基礎進而以小角度X光繞射儀和粉末X光繞射儀解析油脂混合物的結構和高溫載台光學顯微鏡來觀察油脂混合物的相變化。
    在本研究中,使用了異位性皮膚炎的仿生角質層油脂比例(重量百分比:棕櫚酸/膽固醇/神經胺酸=1/1/1.13)與正常皮膚的角質層作為比較,由小角度X光繞射儀發現他們的層狀結構分別為9.3和9.5奈米,而且結構上有些不同,使用粉末X光繞射儀可以分析出仿正常角質層的油脂混合物為六方最密結構,而仿正常角質層的油脂混合物為正交晶系結構,進一步使用參比溫度歷史法來計算出異位性皮膚炎和正常皮膚角質層的熱性質,從熱性質的數據來解讀皮膚在人體表層所扮演的腳色,無論是比熱、熱傳系數,和潛熱的數值都不高,所以角質層在人體表層的功能主要為保護作用(抗紫外線、有毒化學藥品侵害)而非作為恆溫的機制。由於角質層所佔面積很大,而且落毛髮是為了可以接觸去避免危險及從觸覺中學習。角質層熔點高達66攝氏度是防止在高溫地區(例如:非洲氣溫可達50度)熔化。
    由於固態下比熱的差異性(異位性皮膚炎的比熱大於正常皮膚角質層的比熱),可以明顯的判讀出異位性皮膚炎對冷天氣時較為敏感且易發病的原因之一。


    Skin is the outermost and the largest organ of the mammals, and stratum corneum (SC) is the outermost tissue of the skin. There is not much research in the thermal properties of the SC. We use palmitic acid, cholesterol, and ceramide type IV (mass ratio of PA/CHOL/CER4(EOH)=1/1/2) to mimic the healthy SC lipid lamellae. The molten method is used to prepare the lipid mixtures. Use low-temperature differential scanning calorimetry (LTDSC) is used to analyze the equilibrium state of the lipid mixtures. Small angle X-ray scattering (SAXS), powder X-ray diffraction (PXRD) diffraction and hot stage optical microscopy (HSOM) are employed to study the phase transformation and nanostructures of the SC lipid blends.
    In this study, the morphology and thermal property differences between the lipid mixtures of the healthy SC and atopic dermatitis (AD, mass ratio of PA/CHOL/CER4(EOH)=1/1/1.13) are compared. Not only the lamellar structures are 9.5 nm and 9.3 nm, respectively, but also some structures change are observed in SAXS diffraction patterns. The packing of the healthy SC and AD lipid mixtures are hexagonal and orthorhombic phases, respectively. Thermal properties such as specific heat, conductivity and heat of fusion of the health SC and AD lipid mixtures are determined by temperature-history method. Apparently, the role of SC is not for thermal regulation, because of the relatively values of specific heat (3.23±0.14 kJ kg-1K-1), heat conductivity (0.226±0.087 Wm-1K-1), and latent heat (kJ kg-1). The large area of the SC and hairless skin surface mainly are for the sense of touch. The melting point of 66oC prevents SC of early human from melting in Africa of 50oC.
    The specific heat of AD lipid mixtures is larger than the healthy SC lipid mixtures, and it is one of the reasons of the sensitivity and exacerbation of the AD patients in cold weather.

    摘要 i Abstract ii Acknowledgement iv Table of contents v List of Figures ix List of Tables xvi Chapter 1 Introduction 1 1.1 The Structure of the Stratum Corneum in Human Skin 1 1.2 Atopic Dermatitis, One of the skin Diseases 3 1.3 Phase Change Bio-Material of the lipid mixtures 4 1.4 References 6 Chapter 2 Analytical Instruments 11 2.1 Introduction 11 2.2 Microscopic Methods 14 2.2.1 Hot Stage & Optical Microscopy (HSOM) 14 2.3 Thermal Analysis Methods 16 2.3.1 Low Temperature Differential Scanning Calorimetry (LTDSC) 16 2.3.2 Thermometer 18 2.4 Crystallographic Analysis Methods 21 2.4.1 Small-Angle X-ray Scattering (SAXS) 21 2.4.2 Powder X-ray Diffraction (PXRD) 23 2.6 References 25 Chapter 3 Solubility, Crystal Habit, Crystallinity, and Polymorphism of Palmitic Acid by Initial Solvent Screening 28 3.1 Introduction 28 3.1.1 Solubility 29 3.1.2 Crystal Habit 30 3.1.3 Polymorphism 31 3.1.4 Crystallinity 31 3.2 Materials 32 3.2.1 Material 34 3.2.2 Solvents 36 3.3 Experiment Section 40 3.3.1 Initial solvent screening 40 3.3.2 Analytical measurements 41 3.4 Results and Discussion 43 3.4.1 Solubility 43 3.4.2 Crystal habits 50 3.4.3 Crystallinity 52 3.5 Conclusions 54 3.6 References 55 Chapter 4 Structure of the Lipids Mixture as Stratum Corneum 60 4.1 Introduction 60 4.2 Materials 64 4.3 Experimental Methods 66 4.3.1 Experimental Procedures for Low Temperature Differential Scanning Calorimetry (LTDSC) and Hot Stage & Optical Microscope (HSOM) 67 4.3.2 Experimental Procedures for Small-Angle X-ray Scattering (SAXS) 67 4.3.3 Experimental Procedures for Thermocouple 68 4.3.4 Analytical Instrumentations 69 4.4 Results and Discussion 76 4.4.1 Analysis of Lipid Mixtures as healthy SC 77 4.4.2 Analysis of Lipid Mixtures as AD 83 4.4.3 Thermal Properties of the Lipid Mixtures as healthy SC and AD 89 4.5 Conclusions 94 4.6 References 97 Chapter 5 Conclusions and Future Work 104 5.1 Initial Solvent Screening 104 5.2 The Structure and the Thermal Conductivity of Lipid Mixtures of Healthy Stratum Corneum and Atopic Dermatitis 104 5.3 Thermal Properties from Temperature-history method 105 5.4 Future Work 105 Appendix The SAXS diffraction patterns of palmitic acid, cholesterol, and ceramide 106

    G. S. Gooris, and J. A. Bouwstra. Infrared spectroscopic study of stratum corneum model membranes prepared from human ceramides, cholesterol, and fatty acids. Biophys. J. 2007, 92(8), 2785-2795.
    R. R. Wickett, and M. O. Visscher. Structure and function of the epidermal barrier. Am. J. of Infect. Control 2006, 34(10), 98-110.
    B. R. Masters, P. T. C. So, and E. Gratton. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys. J. 1997, 72(6), 2405-2412.
    Z. Ya-Xian, T. Suetake, and H. Tagami. Number of cell layers of the stratum corneum in normal skin - relationship to the anatomical location on the body, age, sex and physical parameters. Arch. Dermatol. Res. 1999, 291(10), 555–559.
    A. V. Rawlings, I. R. Scott, C. R. Harding, and P. A. Bowser. Stratum corneum moisturization at the molecular level. J. Invest. Dermatol. 1994, 103(5), 731-740
    J. A. Bouwstra, G. S. Gooris, F. E. R. Dubbelaar, and M. Ponec. Phase behavior of lipid mixtures based on human ceramides: coexistence of crystalline and liquid phases. J. Lipid Res. 2001, 42(11), 1759-1770.
    R. Rissmann, G. Gooris, M. Ponec and J. Bouwstra. Long periodicity phase in extracted lipids of vernix caseosa obtained with equilibration at physiological temperature. Chem. Phys. Lipids 2009, 158(1),32-38.
    C. R. Flach, R. Mendelsohn, M. E. Rerek, and D. J. Moore. Biophysical studies of model stratum corneum lipid monolayers by infrared reflection-absorption spectroscopy and Brewster angle microscopy. J. Phys. Chem. B 2000, 104(9), 2159–2165.
    Y. Zhu, T. Imae, T. Saiwaki, and T. Oka. Damage/recovery by additive on lipid membrane as a mimicry of human stratum corneum. Langmuir 2010, 26(7), 4951-4957.
    S. Wartewig, R. Neubert, , W. Rettig, and K. Hesse. Structure of stratum corneum lipids characterized by FT-Raman spectroscopy and DSC. IV. Mixtures of ceramides and oleic acid. Chem. Phys. Lipids 1998, 91(2), 145-152.
    S. L. Souza, K. J. Hallock, S. S. Funari, W. L. C. Vaz, J. A. Hamilton, and E. Melo. Study of the miscibility of cholesteryl oleate in a matrix of ceramide, cholesterol and fatty acid. Chem. Phys. Lipids 2011, 164(7), 664-671.
    R. Mendelsohn, M. E. Rerek, and D. J. Moore. Infrared spectroscopy and microscopic imaging of stratum corneum models and skin. Invited Lecture. Phys. Chem. Chem. Phys. 2000, 2(20), 4651-4657.
    E. Corbe, C. Laugel, N. Yagoubi, and A. Baillet. Role of ceramide structure and its microenvironment on the conformational order of model stratum corneum lipids mixtures: an approach by FTIR spectroscopy. Chem. Phys. Lipids 2007, 146(2), 67-75.
    C. L. Silva, S. C. C. Nunes, M. E. S. Eusebio, J. J. S. Sousa, and A. A. C. C. Pais. Study of human stratum corneum and extracted lipids by thermomicroscopy and DSC. Chem. Phys. Lipids 2006, 140(1-2), 36-47.
    W. Abraham, and D. T. Downing. DeuteriumNMRinvestigation of polymorphism in stratum corneum lipids. Biochim. Biophys. Acta 1991, 1068(2), 189-194.
    G. Ch. Charalambopoulou, Th. A. Steriotis, Th. Hauss, K. L. Stefanopoulos and A. K. Stubos. A neutron-diffraction study of the effect of hydration on stratum corneum structure. Appl. Phys. A. 2002, 74(1), 1245-1247.
    J. A. Bouwstra, G. S. Gooris, W. Bras, and D. T. Downing. Lipid organization in pig stratum corneum. J. Lipid Res. 1995, 36(4), 685-695.
    A. D. Nardo, P. Wertz, A. Giannetti, and S. Seidenari. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm. Venereol. 1998, 78(1), 27-30.
    M. Janssens, J. van Smeden, G. S. Gooris, W. Bras, G. Portale, P. J. Caspers, R. J. Vreeken, S. Kezic, A. P. M. Lavrijsen, and J. A. Bouwstra. Lamellar lipid organization and ceramide composition in the stratum corneum of patients with atopic eczema. J. Invest. Dermatol. 2011, 131(10), 2136-2138.
    S. K. Weiland, A. Hűsing, D. P. Strachan, P. Rzehak, N. Pearce, and ISAAC Phase One Study Group. Climate and the prevalence of symptoms of asthma, allergic rhinitis, and atopic eczema in children. Occup Environ Med. 2004, 61(7), 609-615.
    G. Imokawa, A. Abe, K. Jin, Y. Higaki, M. Kawashima, and A. Hidano. Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? Journal of Investigative Dermatology 1991, 96(4), 523–526.
    H. C. Williams. Diagnostic criteria for atopic dermatitis. The Lancet 1996, 348(9038), 1391-1392.
    P. M. Elias. Stratum Corneum Defensive Functions: An Integrated View. Journal of Investigative Dermatology 2005, 125(2), 183-200.
    A. Sari, and K. Kaygusuz. Thermal performance of palmitic acid as a phase change energy storage material. Energy Convers. Manage. 2002, 43(6), 863-876.
    J. H. Li, G. E. Zhang, and J. Y. Wang. Investigation of a eutectic mixture of sodium acetate trihydrate and urea as latent heat storage. Solar Energy 1991, 47(6), 443-445.
    D. Feldman, M. M. Shapiro, and D. Banu. Organic phase change materials for thermal energy storage. Solar Energy Mater. 1986, 13(1), 1-10.
    P. Espeau, D. Mondieig, Y. Haget, and M. A. Cuevas-Diarte. ''Active'' package for thermal protection of food products. Packag. Technol. Sci. 1997, 10(5), 253-260.
    D. Pal, and Y. Joshi. Application of phase change materials for passive thermal control of plastic quad flat packages: a computational study. Numer. Heat Transfer, Part A 1996, 30(1), 19-34.
    J. C. Mulligan, D. P. Colvin, and Y. G. Bryant. Microencapsulated phase-change material suspensions for heat transfer in spacecraft thermal systems. J. Spacecr. Rockets 1996, 33(2), 278-284.
    A. Lazaridis. A numerical solution of the multidimensional solidification (or melting) problem. Int. J. Heat Mass Transfer 1970, 13(9), 1459-1477.
    A.I. Ibraimov. The evolution of body heat conductivity, skin and brain size in human. J. Hum. Ecol. 2007, 21(2), 95-103.
    T. Lee, and J. F. Peng. Photoluminescence and crystal structures of chiro-optical 1,1’-bi-2-napthol crystals and their inclusion compounds with dimethyl sulfoxide. Cryst. Growth & Des. 2010, 10(8), 3547-3554.
    J. Haleblian, and W. McCrone. Pharmaceutical applications of polymorphism. J. Pharm. Sci. 2006, 58(8), 911-929.
    H. G. Brittain. Polymorphism in Pharmaceutical Solids, (Marcel Dekker, New York, 1999), pp. 1-31.
    T. L. Threlfall. Analysis of organic polymorphs: A review. Analyst 1995, 120(10), 2435-2460.
    T. Lee, C. S. Kuo, and Y. H. Chen. Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening. Pharm. Tech. 2006, 30(7), 72-92.
    V. Koradia, G. Chawla, and A. K. Bansal. Qualitative and quantitative analysis of clopidogrel bisulfate polymorphs. Acta Pharm. 2004, 54(3), 193-204
    B. R. Spong, C. P. Price, A. Jaysasankar, A. J. Matzger, and N. R. Hornedo. General principles of pharmaceutical solid polymorphism: a supramolecular perspective. Adv. Drug Deliv. Rev. 2004, 56(3), 241-274.
    S. L. Souza, M. J. Capitan, and J. Alvarez. Phase behavior of aqueous dispersions of mixtures of n-palmitoyl ceramide and cholesterol: a lipid system with ceramide−cholesterol crystalline lamellar phases. J. Phys. Chem. B 2009, 113(5), 1367-1375.
    S. L. Souza, J. Valerio, S. S. Funari, and E. Melo. The thermotropism and prototropism of ternary mixtures of ceramide C16, cholesterol and palmitic acid. An exploratory study. Chem. Phys. Lipid 2011, 164(7), 643-653.
    R. J. Roe. Small-Angle scattering. Ch 5 in Methods of X-ray and neutron scattering in polymer science, (J. E. Mark, Oxford University Press, USA, 2000) pp. 155-208.
    J. E. Macur, J. Marti, and S. C. Lui. Microscopy, Ch 8 in Matericals characterization and chemical analysis, 2nd Edition, (J. P. Sibilia, Wiley-Vch, New York, USA, 1996) pp. 167-177.
    P. J. Haines, and F. W.Wilburn. Thermal methods of analysis principles differential, Ch 3 in Thermal Analysis and Differential Scanning Calorimetry, Applications and Problems, 1st ed, (Blackie Academic and Professional, New York, USA, 1995) pp.63-89.
    E. V. Boldyerva, V. A. Drebushchak, I. E. Paukov, Y. A. Kovalevskaya, and T. N. Drebushchak. DSC and adiabatic calorimetry study of the polymorphs of paracetamol. J. of Therm. Anal. Calor. 2004, 77(2), 607-623.
    X. H. Liang, Y. Q. Guo, L. Z. Gu, and E. Y. Ding. Crystalline-amorphous phase transition of poly(ethylene glycol)/cellulose blend. Macromolecules 1995, 28(19), 6551-6555.
    A. Devices. Linear Circuit Design Handbook. Ch3 in Sensors, (H. Zumbahlen, Analog Devices Inc., USA, 2008) pp.3.1-3.100.
    The Labfacility Temperature Handbook. http://www.labfacility.co.uk/temperature-handbook.html (accessed May 25, 2012).
    C. Y. Chang, Y. C. Lee, P. J. Wu, J. Y. Liou, Y. S. Sun, and B. T. Ko. Micellar transitions in solvent-annealed thin films of an amphiphilic block copolymer controlled with tunable surface fields. Langmuir 2011, 27(23), 14545-14553.
    B. R. Spong, C. P. Price, A. Jaysasankar, A. J. Matzger, N. R. Hornedo. General 139 principles of pharmaceutical solid polymorphism: A supramolecular perspective. Adv. Drug Deliv. Rev. 2004, 56(3), 241-274.
    T. Lee and S. C. Chang. Sublimation Point Depression of Small-Molecule Semiconductors by Sonocrystallization. Cryst. Growth Des. 2009, 9(6), 2674–2684.
    K. J. Roberts, R. Docherty, P. Bennema, and L. A. M J Jetten. The importance of considering growth-induced conformational change in predicting the crystal habit of benzophenone. J. Phys. D: Appl. Phys. 1993, 26(8B), B7-B21.
    S. Gracin, and A. C. Rasmuson. Solubility of phenylacetic acid, p-hydroxyphenylacetic acid, p-aminophenylacetic acid, p-hydroxybenzoic acid, and ibuprofen in pure solvents. J. Chem. Eng. Data 2002, 47(6), 1379–1383.
    A. Chimmalgi, D. J. Hwang, and C. P. Grigoropoulos. Nanoscale rapid melting and crystallization of semiconductor thin films. Nano Lett. 2005, 5(10), 1924–1930
    K. J. Kim, and H. S. Kim. Coating of energetic materials using crystallization. Chem. Eng. Technol. 2005, 28(8), 946-951.
    C. K. Chen, and A. K. Singh. A “Bottom-Up” approach to process development: application of physicochemical properties of reaction products toward the development of direct-drop processes. Org. Proc. Res. Dev. 2001, 5(5), 508–513.
    W. W. Wang, and Y. J. Zhu. Synthesis of pbcro4 and pb2cro5 rods via a microwave-assisted ionic liquid method. Cryst. Growth & Des. 2005, 5(2), 505–507.
    D. Braga, and F. Grepioni. Making crystals from crystals: a green route to crystal engineering and polymorphism. Chem. Commun. 2005, (29), 3635-3645.
    J. E. Aber, S. Arnold, and B. A. Garetz. Strong dc electric field applied to supersaturated aqueous glycine solution induces nucleation of the gamma polymorph. Phys Rev Lett. 2005, 94(14), 145503-1-4.
    T. Lee, C. S. Kuo, and Y. H. Chen. Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening. Pharm. Tech. 2006, 30(10), 72-92.
    A. Sari, and K. Kaygusuz. Thermal performance of palmitic acid as a phase change energy storage material. Energy Convers. Manage. 2002, 43(6), 863-876.
    J. Wang, H. Xie, Z. Xin, Y. Li, and L. Chen. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Solar Energy 2010, 84(2), 339-344.
    T. Kato. Self-assembly of phase-segregated liquid crystal structures. Science 2002, 295(5564), 2414-8
    M. Holtje, T. Forster, B. Brandt, T. Engels, W. v. Rybinski, and H.-D. Holtje. Molecular dynamics simulations of stratum corneum lipid models: fatty acids and cholesterol. Biochim. Biophys. Acta 2001, 1511(1), 156-167.
    J. A. Bouwstra, P. L. Honeywell-Nguyen, G. S. Gooris, and M. Ponec. Review Structure of the skin barrier and its modulation by vesicular formulations. Prog. Lipid Res. 2003, 42(1), 1-36.
    Y. Zhu, T. Imae, T. Saiwaki, T. Oka. Damage/Recovery by Additive on Lipid Membrane as a Mimicry of Human Stratum Corneum. Langmui 2010, 26(7), 4951-4957.
    T. Lee, Y. H. Chen, and C. W. Zhang. Solubility, polymorphism, crystallinity, crystal habit, and drying scheme of (r,s)-(±)-sodium ibuprofen dihydrate. Pharm. Technol. 2007, 31(6), 72-87.
    H. G. Brittain, and D. J. W. Grant, Chapter 7 in Polymorphism in Pharmaceutical Solid, Edited by H. G. Brittain, (Marcel Dekker, New York, USA, 1999) pp. 279-330.
    C. Reichardt, Chapter 2 in Solvents and Solvent Effects in Organic Chemistry, Edited by C. Reichardt, (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006) pp. 5-46.
    P. D. Martino, M. Beccerica, E. Joiris, G. F. Palmieri, A. Gayot, and S. Martelli. Influence of crystal habit on the compression and densification mechanism of ibuprofen. J. Crys. Growth 2002, 243(2), 345-355.
    D. Winn, and M. F. Doherty. A new technique for predicting the shape of solution-grown organic crystals. AlChE J. 1998, 44(11), 2501-2514.
    A. K. Tiwaray. Modification of crystal habit and its role in dosage from performance. Drug Dev. Ind. Pharm. 2001, 27(7), 699-709.
    M. Lahav, and L. Leiserowitz. The effect of solvent on crystal growth and crystal habit. Chem. Eng. Sci. 2001, 56(7), 2245-2253.
    R. Hilfiker, F. Blatter, M. V. Raumer, Chaper 1 in Polymorphism in pharmaceutical industry, Edited by R. Hilfiker, (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006) pp.1-19.
    T. Threfall. Crystallization of polymorphs: thermodynamic insight into the role of solvent. Org. Process Res. Dev. 2000, 4(5), 384-390.
    K. Sato. Polymorphic transformations in crystal growth. J. Phys. D: Appl. Phys., 1993, 26(8B), B77-B84.
    K. Sato. Crystallization behavior of fats and lipids – a review. Chem. Eng. Sci. 2001, 56(7), 2255-2265.
    D. Gao, and J. H. Rytting. Use of solution calorimetry to determine the extent of crystallinity of drugs and excipients. Int. J. Pharm. 1997, 151(2), 183-192.
    P. J. Haines. Thermal methods of analysis – principles, applications and problems. (Blackie Acadmic & Professional, London, UK, 1995) p. 89.
    R. Benages, L. Bayes, R. Cordobilla, E. Moreno, T. Calvet, and M. A. Cuevas-Diarte. A comparative study of several techniques to obtain fatty acid nanoparticles: palmitic acid. Cryst. Growth Des. 2009, 9(4), 1762–1766.
    E. Moreno , R. Cordobilla , T. Calvet , M. A. Cuevas-Diarte , G. Gbabode , P. Negrier , D. Mondieig and H. A. J. Oonk. Polymorphism of even saturated carboxylic acids from n-decanoic to n-eicosanoic acid. New J. Chem. 2007, 31(6), 947-957.
    T. Lee, Y. C. Su, H. J. Hou, and H. Y. Hsieh. Initial solvent screening of carbamazepine, cimetidine, and phenylbutazone part 1 of 2. Pharm. Tech. 2009, 33(5), 62-72.
    T. Lee, Y. C. Su, H. J. Hou, and H. Y. Hsieh. Initial solvent screening of carbamazepine, cimetidine, and phenylbutazone part 2 of 2. Pharm. Technol. 2009, 33(6), 54-61.
    T. Lee, and M. S. Lin. Sublimation Point Depression of Tris(8-hydroxyquinoline)aluminum (III) (Alq3) by Crystal Engineering. Cryst. Growth Des. 2007, 7(9), 1803-1810.
    J. W. Mullin. Crystal habit modification, Ch6 in Crystallization, 3rd ed., (Butterworth-Heinemann, Oxford, UK, 1997), pp. 248-250.
    I. Ludlam-Brown, and P. York. The crystalline modification of succinic acid by variations in crystallization conditions. J. Phys. D: Appl. Phys. 1993, 26(8B), B60-B65.
    S. L. Souza, M. J. Capitan, J. Alvarez, S. S. Funari, M. H. Lameiro, and E. Melo. Phase behavior of aqueous dispersions of mixtures of N-palmitoyl ceramide and cholesterol: a lipid system with ceramide-cholesterol crystalline lamellar phases. J. Phys. Chem. B 2009, 113(5), 1367-1375.
    D. Kuempel, D. C. Swartzendruber, C. A. Squier, P. W. Wertz. In vitro reconstitution of stratum corneum lipid lamellae. Biochim. Biophys. Acta 1998, 1372(1), 135-140.
    R. R. Wickett, and M. O. Visscher. Structure and function of the epidermal barrier. Am. J. Infect. Control 2006, 34(10), 98-110.
    T. J. Mclntosh. Organization of skin stratum corneum extracellular lamellae: diffraction evidence for asymmetric distribution of cholesterol. Biophys. J. 2003, 85(3), 1675–1681.
    P. M. Elias. Stratum Corneum Defensive Functions: An Integrated View. J. Invest. Dermatol. 2005, 125(2), 183-200.
    R. R. Wickett, and M. O. Visscher. Structure and function of the epidermal barrier. Am. J. of Infect. Control 2006, 34(10), 98-110.
    P. M. Elias, J. Goerke, and D. S. Friend. Mammalian epidermal barrier layer lipids: composition and influence on structure. J. Invest. Dermatol. 1977, 69(6), 535-546.
    P. M. Elias, N. S. McNutt, and D. S. Friend. Membrane alterations during cornification of mammalian squamous epithelia: a freeze-fracture, tracer, and thin-section study. Anat. Rec. 1977, 189(4), 577-594.
    J. A. Bouwstra, G. S. Gooris, J. A. Van Der Spek, and W. Bras. Structural investigations of human stratum corneum by small-angle x-ray scattering. J. Invest. Dermatol. 1991, 97(6), 1005-1012.
    S. L. Souza, K. J. Hallock, S. S. Funari, W. L.C. Vaz, J. A. Hamilton, E. Melo. Study of the miscibility of cholesteryl oleate in a matrix of ceramide, cholesterol and fatty acid. Chem. Phys. Lipids 2011, 164(7), 664-671.
    B. R. Masters, P. T. C. So, and E. Gratton. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys. J. 1997, 72(6), 2405-2412.
    E. Corbe, C. Laugel, N. Yagoubi, and A. Baillet. Role of ceramide structure and its microenvironment on the conformational order of model stratum corneum lipids mixtures: an approach by FTIR spectroscopy. Chem. Phys. Lipids 2007, 146(2), 67-75.
    B. Baroli. Penetration of nanoparticles and nanomaterials in the skin: fiction or reality? J. Pharm. Sci. 2010, 99(1), 21-48.
    J. A. Bouwstra, G. S. Gooris, F. E. R. Dubbelaar and M. Ponec. Phase behavior of lipid mixtures based on human ceramides: coexistence of crystalline and liquid phases. J. Lipid Res. 2001, 42(11), 1759-1770.
    J. A. Bouwstra, J. Thewalt, G. S. Gooris, and N. Kitson. A Model Membrane Approach to the Epidermal Permeability Barrier: An X-ray Diffraction Study. Biochemistry 1997, 36(25), 7717–7725.
    M. Janssens, J.V. Smeden, G. S. Gooris, W. Bras, G. Portale, P. J. Caspers, R. J. Vreeken, S. Kezic, A. P. M. Lavrijsen and J. A. Bouwstra. Lamellar Lipid Organization and Ceramide Composition in the Stratum Corneum of Patients with Atopic Eczema. J. Invest. Dermatol. 2011, 131(10), 2136-2138.
    A. D. Nardo, P. Wertz, A. Giannetti, and S. Seidenari. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm Venereol (Stockh) 1998, 78(1), 27–30.
    M. C. Mihm, Jr., N. A. Soter, H. F. Dvorak, and K. F. Austen. The structure of normal skin and the morphology of atopic eczema. J. Invest. Dermatol. 1976, 67(1), 305–312.
    G. Imokawa, A. Abe, K. Jin, Y. Higaki, M. Kawashima, and A. Hidano. Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J. Invest. Dermatol. 1991, 96(4), 523–526.
    H. Watanabe, Y. Obata, Y. Onuki, K. Ishida, and K. Takayama. Different effects of l- and d-menthol on the microstructure of ceramide 5/cholesterol/palmitic acid bilayers. Inte. J. Pharm. 2010, 402(1-2), 146–152.
    Y. Zhu, T. Imae, T. Saiwaki, T. Oka. Damage/recovery by additive on lipid membrane as a mimicry of human stratum corneum. Langmuir 2010, 26(7), 4951-4957.
    S. L. Souza, J. Valerio, S. S. Funari, E. Melo. The thermotropism and prototropism of ternary mixtures of ceramide C16, cholesterol and palmitic acid. An exploratory study. Chem. Phys. Lipids 2011, 164(7), 643– 653.
    D. Mondieig, and Y. Haget. Molecular alloys as phase change materials (MAPCM) for the storage of thermal energy. Mat. Res. Bull. 1991, 26(10), 1091-1099.
    S. K. Weiland, A. Hűsing, D. P. Strachan, P. Rzehak, N. Pearce, and ISAAC Phase One Study Group. Climate and the prevalence of symptoms of asthma, allergic rhinitis, and atopic eczema in children. Occup Environ Med. 2004, 61(7), 609-615.
    A. V. Rawlings. Trends in stratum corneum research and the management of dry skin conditions. Int. J. Cosmet. Sci. 2003, 25(1-2), 63-95.
    A. Sari, and K. Kaygusuz. Thermal performance of palmiticacid as a phase change energy storage material. Energy Convers. Manage. 2002, 43(6), 863-876.
    M. Wegener, R. Neubert, , W. Rettig, and S. Wartewig. Structure of stratum corneum lipids characterized by FT-Raman spectroscopy and DSC. III. Mixtures of ceramides and cholesterol. Chem. Phys. Lipids 1997, 88(1), 73-82.
    S. Wartewig, R. Neubert, W. Rettig, and K. Hesse. Structure of stratum corneum lipids characterized by FT-Raman spectroscopy and DSC. IV. Mixtures of ceramides and oleic acid. Chem. Phys. Lipids 1998, 91(2), 145-152.
    J. A. Bouwstra, G. S. Gooris, W. Bras, and D. T. Downing. Lipid organization in pig stratum corneum. J. Lipid Res. 1995, 36(4), 685-695.
    G. Rodriguez, M. Cocera, L. Rubio, C. Lopez-Iglesias, R. Pons, A. de la Maza, and O. Lopez. A Unique Bicellar Nanosystem Combining Two Effects on Stratum Corneum Lipids. Mol. Pharmaceutics 2012, 9 (3), 482–491.
    J. C. Silva, T. S. Plivelic, M. L. Herrera, N. Ruscheinsky, T. G. Kieckbusch, V. Luccas and I. L. Torriani.Polymorphic Phases of Natural Fat from Cupuassu (Theobroma grandiflorum) Beans: A WAXS/SAXS/DSC Study. Cryst. Growth Des. 2009, 9 (12), 5155–5163.
    . C. Huang, H. Toraya, T. N. Blanton, and Y. Wu. X-ray powder diffraction analysis of silver behenate, a possible low-angle diffraction standard. J. Appl. Cryst. 1993, 26(2), 180-184.
    K. C. Madison, D. C. Swartzendruber, P. W. Wertz, and D. T. Downing. Lamellar granule extrusion and stratum corneum intercellular lamellae in murine keratinocyte cultures. J. Invest. Dermatol. 1988, 90(2), 110-116.
    R. Rissmann, G. Gooris, M. Ponec, and J. Bouwstra. Long periodicity phase in extracted lipids of vernix caseosa obtained with equilibration at physiological temperature. Chem. Phys. Lipids. 2009, 158(1), 32-38.
    A. V. Rawlings, A. Watkinson, J. Rogers. Abnormalities in stratum corneum structure lipid composition and desmosome degradation in soap-induced winter xerosis. J. Soc. Cosmet. Chem. 1994, 45(4), 203-220.
    B. Zalba, J. M. Marı́na, L. F. Cabezab, and H. Mehling. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23(3), 251-283.
    D. O. Cooney. The human thermal system, Ch5 in Biomedical engineering principles - An Introduction to Fluid, Heat, and Mass Transport Processes, 1st Edition, (G. A. Bekey, Los Angeles, and D. D. Reneau, Ruston, USA, 1976) PP. 127-135.
    M. M. Suarez-Varela, L. G.-M. Alvarez, M. D. Kogan, A. L. Gonzalez, A. M. Gimeno, I. Ag. Ontoso, C. G. Diaz, A. A. Pena, B. D. Aurrecoechea, R. M. B. Monge, A. B. Quiros, J. B. Garrido, I. M. Canflanca, and A. L.-S. Varela. Climate and prevalence of atopic eczema in 6- to 7-year-old school children in Spain. ISAAC PhASE III. Int. J. Biometeorol. 2008, 52(8), 833–840.
    D. J. Moore, M. E. Rerek, and R. Mendelsohn. Lipid Domains and Orthorhombic Phases in Model Stratum Corneum: Evidence from Fourier Transform Infrared Spectroscopy Studies. Biochem. Biophys. Res. Commun. 1997, 231(3), 797–801.
    D. Kuempel, D. C. Swartzendruber, C. A. Squier, and P. W. Wertz. In vitro reconstitution of stratum corneum lipid lamellae. Biochim. Biophys. Acta 1998, 1372(1), 135-140.
    F. F. de Sousa1, G. D. Saraiva, P. T. C. Freire, J. A. Lima Jr, P. Alcantara Jr, F. E. A. Melo, and J. Mendes Filho. Pressure-induced phase transitions in palmitic acid: C form. J. Raman Spectrosc. 2012, 43(1), 146-152.

    QR CODE
    :::