| 研究生: |
鄭竹軒 Cheng-Chu-Shuan |
|---|---|
| 論文名稱: |
高速公路服務區電動充電站之設址問題探討 Determination of Charging Station Locations in Highway Service Areas |
| 指導教授: | 王啟泰 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業管理研究所 Graduate Institute of Industrial Management |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 永續發展 、綠色運輸 、充電站 、電動車 |
| 外文關鍵詞: | sustainable development, green transport, electric charging stations, electric vehicle |
| 相關次數: | 點閱:28 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著對環境和資源短缺的壓力越來越大,節能和環境保護在全球越來越受到關注。交通運輸造成的二氧化碳排放量占全部的排放量越來越高。替代燃料汽車可以有效減少石油的使用,並且被廣泛認為是解決我們這個時代宏觀的環境挑戰,即能源安全,氣候變化和永續發展是未來的目標。
永續發展時,綠色運輸變得越來越重要,電動車可能變成我們重要的交通工具,為了確保高速公路上的通勤者使用電動車時有足夠的電量完成旅程,通勤者從他們的出發地到目的地,許多通勤者必須在通勤期間充電他們的電動車,因此出現了一些問題。本文的目的是提出一個數學模型來最佳化台灣高速公路哪些交流道需設置充電站和每個站中充電器的數量,以最小化總充電器數量為目標,考慮台灣高速公路交流道的充電站的建設和通勤者的充電便利性是本問題中的兩個關鍵因素。
在哪裡定位充電站和在每個站中安裝多少充電器以滿足基本充電需求。通常,在可能發生活動的每個場所設置充電站是不實際的和成本昂貴的。對於政府或城市規劃者來說,適當地定位充電站是非常重要的。對於參加在沒有充電站的地方進行活動的通勤者,可能需要在可容忍距離內的替代地點對電動車充電。
所提出的模型是適用通勤發生工作日。提出了一種用於求解的數學模型算法,想透過解析模型可以獲得更好的定位方案。我們希望本研究在一定程度上為高速公路服務區和交流道的電動充電站設址問題提供新的研究見解。
本研究資料來源來自交通部及國道電子計程收費資料,研究結果顯示13個交流道,東湖、內湖、圓山、台北、三重、五股、后里、台中系統、豐原、大雅、台中、岡山及高雄九如交流道是不用設置充電站的,而設最多充電器的節點則是三重交流道。
With the increasing pressure on the environment and shortage of resources, energy conservation and environmental protection in the world should pay attention more. The total amount of carbon dioxide emissions from transportation is increasing. Alternative fuel vehicles can effectively reduce to use oil and are widely considered to address the macro environmental challenges in our time. Energy security, climate change and sustainable develop in the future.
The green transport will become to increase in sustainable development. The electric vehicles may become an important transport. In order to ensure commuters drive on the freeway who have sufficient power to complete the round-trip journey. The commuters drive from their departure to destination. Many commuters must charge their electric cars during commuting. There are some problems we should solve. The purpose of this paper is to propose a mathematical model to optimize the Taiwan expressway which service areas need to set the number of charging stations and the number of chargers are in each station. In the service area of the freeway. We should minimize the total number of chargers objectively and take into account the construction of the charging station in the service area of the freeway. Commuter charging convenience is two key factors in this issue.
Where can locate the charging station and how many chargers are installed in each station to meet the basic charging requirements? It is not practical and costly to set up a charging station on every place where the event may occur. It is important for a government or city planner to properly position a charging station. For commuters who participate in activities where there is no charging station, it may be necessary to charge the electric vehicle at an alternative location within a tolerable distance.
An algorithm solve the extended model is our goal. A better positioning scheme can be obtained through the analytic extension model. We hope this paper will provide some new insights on the location of electric charging stations in freeway’s service areas.
The research of data are from the Ministry of Communications and the National Road Electronic Toll Collection data. The results show that thirteen nodes of the Donghu, Neihu, Yuanshan, Taipei, Sanchong, Wugu, Taichung system, Fengyuan, Taoya, Taichung, Okayama, Kaohsiung chiuju. The Donghu and Kaohsiung chiuju can not be setted up the charging station. The most charging station node is the Sanchong.
〔1〕 Dias, N., Curwell, S., Bichardm, E. (2014). The current approach of urban design, its implications for sustainable urban development. Procedia Economics and Finance 18, 497-504.
〔2〕 DeCicco, J.M., An, F., Ross, M. (2001). Technical Options for Improving the Fuel Economy of US Cars and Light Trucks by 2010–2015. American Council for an Energy-Efficient Economy, Washington, DC.
〔3〕 Dong, J., Liu, C.Z., Lin, Z.H. (2014). Charging infrastructure planning for promoting battery electric vehicles: an activity-based approach using multiday travel data. Emerging Technologies 38, 44–55.
〔4〕 Eggers, F., Eggers, F. (2011). Where have all the flowers gone? Forecasting green trends in the automobile industry with a choice-based conjoint adoption
model. Technological Forecasting and Social Change 78, 51–62.
〔5〕 Greene, D.L., Patterson, P.D., Singh, M., Li, J. (2005). Feebates, rebates and
gasguzzler taxes: a study of incentives for increased fuel economy. Energy
Policy 33, 757–775.
〔6〕 Greene, D.L., Schafer, A. (2003). Reducing Greenhouse Gas Emissions from US Transportation. Pew Center on Global Climate Change, Arlington, VA.
〔7〕 Harret, T.W.H., Wang, H.D., Wang, L.H. (1997). The comprehensive
evaluation method of urban sustainable development. China Population, Resources and Environment. 7(2), 46-50.
〔9〕 Kley, F., Lerch, C., Dallinger, D. (2011). New business model for electric cars
A holistic approach. Energy Policy 39 (6), 3392–3403.
〔10〕Khan, M., Kockelman, K.M. (2012). Predicting the market potential of plug-in
electric vehicles using multiday GPS data. Energy Policy 46 (C), 225–233.
〔11〕Li, X.G., Liu, Y.W., Shi, F.Y. (2016). Severe water ecology crisis in urban and
rural areas in China and comprehensive governance of water resources
environment. Lay Theme Forum 1(6), 20-23.
〔8〕 Li, J., Chen, Q.Y., Wang, h., Ni, D. (2012). Analysis of LWR model with
fundamental diagram subject to uncertainties. Transportmetrica 8 (6), 387-
405.
〔12〕Mattia, M.A.M., Julian, Z., Thomas, E. (2015). Urban Monitoring in Support of
Sustainable Cities. Urban Remote Sensing Event.
〔13〕Meng, Q., Li, M. (2002). New economy and ICT development in China. Inf.
Econ. Policy 14, 275-295.
〔14〕Melaina, M., Bremson, J. (2008). Refueling availability for alternative fuel
vehicle markets: Sufficient urban station coverage. Energy Policy 36 (8), 3233–3241.
〔15〕Mak, H.Y., Rong, Y., Max Shen, Z.J. (2013). Infrastructure planning for
electric vehicles with battery swapping. Management Science 59 (7), 1557–1575.
〔16〕NAS, (2002). Effectiveness and Impact of Corporate Average Fuel Economy
(CAFE) Standards. National Academy of Sciences, Washington, DC.
〔17〕Pelizer, M., Sousa, K.A., Pelizer, L.C., (2004). Proposal of indicators to assess
urban sustainability in Brazil environment. Sustainable Development 6, 355-
366.
〔18〕Shaker, R.R., Sirodoev, I.G. (2016). Assessing sustainable development across Moldova using household and property composition indicators. Habitat International 55, 1-13.
〔19〕Schroeder, A., Traber, T. (2012). The economics of fast charging infrastructure for electric vehicles. Energy Policy 43, 136–144.
〔20〕San Román, T.G., Momber, I., Abbad, M.R., Miralles, A.S. (2011). Regulatory framework and business models for charging plug-in electric vehicles:
Infrastructure, agents, and commercial relationships. Energy Policy 39 (10), 6360–6375.
〔21〕Schroeder, A. (Traber), T., 2012. The economics of fast charging infrastructure for electric vehicles. Energy Policy 43, 136–144.
〔24〕Wang, Y.-W., Lin, C.-C. (2009). Locating road-vehicle refueling stations. Transportation Research Part E: Logistics and Transportation Review 45, 821–829.
〔25〕Wang, Y.-W. (2011). Locating flow-recharging stations at tourist destinations to serve recreational travelers. International Journal of Sustainable Transportation 5, 153–171.
〔26〕Wang, Y.-W., Lin, C.-C. (2009). Locating road-vehicle refueling stations. Transportation Research Part E: Logistics and Transportation Review 45, 821–829.
〔27〕Xu, X.Q., Zhang, J.J. (2001). Comprehensive evaluation of guangzhou urban sustainable development. Acta Oceanologica Sinica 56 (1), 54-63.
〔28〕WBCSD, (2001). Mobility (2001): World Mobility at the End of the Twentieth Century and its Sustainability. World Business Council for Sustainable Deve.
〔29〕許家興:電動車電池類型與電池基礎介紹.車輛研測資訊財團法人車輛研究測試中心。2009,取自https://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=1426。
〔30〕維基百科:純電動車。2017,取自https://zh.wikipedia.org/wiki/%E7%B4%94%E9%9B%BB%E5%8B%95%E8%BB%8A。
〔31〕林琮文:未來極端氣候更頻繁酷熱洪澇更強烈。2013,取自
http://www.epochtimes.com/b5/13/8/11/n3938490.htm。
〔32〕Cheryl:鋰離子電池 & 充電站。2014,取自 https://www.stockfeel.com.tw/%E9%9B%BB%E5%8B%95%E8%BB%8A%E7%99%BC% E5%B1%95%E9%97%9C%E9%8D%B5%EF%BC%9A%E9%8B%B0%E9%9B%A2%E5%AD %90%E9%9B%BB%E6%B1%A0%E5%85%85%E9%9B%BB%E7%AB%99/。
〔33〕吳木富副局長:ETC資料分析應用於高速公路管理之案
例分享。2015,取自 http://bigdata.iot.gov.tw/index.php?option=com_content&view=article&id=12:%E6 %A1%88%E4%BE%8B%E4%BA%8C%EF%BC%9A-etc%E8%B3%87%E6%96%99%E5%88%86%E6%9E%90%E6%87%89%E7%94%A8%E6%96%BC%E9%AB%98%E9%80%9F%E5%85%AC%E8%B7%AF%E7%AE%A1%E7%90%86%E4%B9%8B%E6%A1%88%E4%BE%8B%E5%88%86%E4%BA%AB&catid=8&Itemid=176。
〔34〕中華民國台灣區國道高速公路局:年日交通量參考值(匝道)。2016,取自
http://www.freeway.gov.tw/Publish.aspx?cnid=1652&p=5627。