跳到主要內容

簡易檢索 / 詳目顯示

研究生: 馬漢德
Raka Mahendra Sulistiyo
論文名稱: 相思樹與聚丙烯於不同混合比在流化床熱裂解下固態與可冷凝揮發性產物分析
Analysis of solid and condensed volatile products in fluidized bed pyrolysis by using mixture of Acacia and Polypropylene
指導教授: 蕭述三
Shu-San Hsiau
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 88
中文關鍵詞: 生質物相思樹聚丙烯快速熱解流化床GCMS焦炭TGAFTIR
外文關鍵詞: biomass, Acacia, polypropylene, fast pyrolysis, fluidized bed, GCMS, char, TGA, FTIR
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究乃透過流化床作為反應器,探討相思樹與聚丙烯於不同混合比例下於熱化學裂解過程所產生之固態與可冷凝揮發性產物。實驗過程中,使用惰性氣體氮氣防止產物的氧化,並採用直徑0.4 mm的石英砂做為床層材料,混合不同比例之相思樹和聚丙烯且不添加任何催化劑,於三種不同的溫度(450℃、500℃、550℃)下進行裂解反應。利用熱重力和傅立葉變換紅外光譜(TGA-FTIR)分析其不同混合下之參數,其中分別以近似及元素分析來探討該熱烈解過程中所產生之固體產物特性,而可冷凝揮發產物則採用氣相色譜質譜(GC/MS)觀察其成份。
    分析結果顯示,相思樹在溫度範圍220°C至390°C之間具有兩個分解過程,其峰值點為365°C;而聚丙烯僅有單一分解過程於溫度範圍390°C到500°C之間,其峰值點為472°C。此乃兩種材料含量不同,導致混合物在裂解過程中有所不同。另一方面,由於聚丙烯之含量影響氣體多寡,故其產物於FTIR將顯示出較高的吸光度,此乃因聚丙烯造成揮發物(氫氣、氧氣)含量增加,並降低濕度、固定碳、灰份以及碳含量。而由結果得知,混合不同比例下的相思樹與聚丙烯所
    產生之可冷凝揮發性化合物,如苯酚、酸、呋喃以及烷基等含氧化合物,而對於其所產生之焦碳將比其他熱值較低且含硫量較高之材料來的好。


    Thermochemical degradation of Acacia and polypropylene was studied through pyrolysis process. Fluidized bed reactor was used to collect the solid and condensed volatile product. During the process, inert gas used nitrogen to prevent the existence of oxygen and bed material used silica sand with diameter 0.4 mm. Acacia and polypropylene were mixed with different composition. Feedstock was processed at three different temperatures, 450 °C, 500 °C, 550 °C without any catalyst addition. Thermal degradation of each parameter for raw feedstock was studied by thermogravimetric analysis and Fourier transform infrared spectroscopy (TGA-FTIR). Characteristics of solid product from the process were studied by proximate and elemental analysis. Constituent of condensed volatile was observed using gas chromatography mass spectrometry (GC/MS).
    The result showed that Acacia and polypropylene have different characteristic of thermal degradation process. Acacia has two decomposition step process from 220 °C until 390 °C with 365 °C of peak point while polypropylene has one step decomposition from 390 °C until 500 °C with 472 °C of peak point. The mixture created combined range of degradation process due to each material content. FTIR of raw materials shown the highest absorbance because the effect of polypropylene is to produce gas content. Char characterization was exhibit that polypropylene addition promotes volatile matter level, hydrogen, oxygen content. Polypropylene decreased moisture level, fixed carbon, ash content, carbon content. The mixture feedstock of char result was better than other char from different materials which have lower heating value and higher sulfur content. The compounds of condensable volatile were oxygenated compounds such phenols. Acid, furans, alkyl groups were found.

    Acknowledgement i Abstract ii Table of Contents iv List of Figures vi List of Tables viii Chapter 1: Introduction 1 1.1 Background 1 1.1.1 Biomass and plastic as potential feedstock materials of renewable energy 4 1.1.2 Acacia wood as part of pyrolysis 5 1.1.3 Potential mixture with polypropylene 7 1.2 Literature review 7 1.3 Research motivations and objectives 8 1.3.1 Research motivations 8 1.3.2 Objective 9 1.4 Thesis structure 9 Chapter 2: Fundamental Overview 11 2.1 Feedstock 11 2.1.1 Acacia 11 2.1.2 Polypropylene 12 2.2 Pyrolysis in general as thermochemical process 15 2.3 Fluidized bed pyrolysis 19 2.4 Proximate and ultimate analysis of char 21 2.5 TGA-FTIR 22 2.6 GCMS 23 Chapter 3: Methodology 26 3.1 Materials 26 3.2 Method 27 3.2.1 TGA-FTIR 28 3.2.2 Proximate analysis 29 3.2.3 GC-MS 30 3.2.4 Experimental technique 30 3.3 Experimental process 32 3.4 Experimental equipment 33 Chapter 4: Result and Discussion 40 4.1 Thermal analysis 40 4.2 Char analysis 53 4.3 GCMS analysis 58 Chapter 5: Conclusion 69 References 71

    [1] A. Zervos, Renewables 2016 global status report 2016. 2016.
    [2] A. Zhou and E. Thomson, “The development of biofuels in Asia,” Appl. Energy, vol. 86, no. SUPPL. 1, pp. S11–S20, 2009.
    [3] P. Basu, Biomass Gasification and Pyrolysis Handbook. 2010.
    [4] H. B. Goyal, D. Seal, and R. C. Saxena, “Bio-fuels from thermochemical conversion of renewable resources: A review,” Renew. Sustain. Energy Rev., vol. 12, no. 2, pp. 504–517, 2008.
    [5] M. Syamsiro, H. Saptoadi, T. Norsujianto, P. Noviasari, S. Cheng, Z. Alimuddin, K. Yoshikawa., “Fuel oil production from municipal plastic wastes in sequential pyrolysis and catalytic reforming reactors,” Energy Procedia, vol. 47, pp. 180–188, 2014.
    [6] N. Sasaki, K. Wolfgang, D. R. David, E. Hiroko, N. Hiroshi, C. Sengtha, K. Sophanarith, S. Sengxi., “Woody biomass and bioenergy potentials in Southeast Asia between 1990 and 2020,” Appl. Energy, vol. 86, no. SUPPL. 1, pp. S140–S150, 2009.
    [7] “Plastics – the Facts 2016. An analysis of European plastics production, demand and Data;2016, Waste,” 2016.
    [8] G. M. Hasan, “Knowledge Management,” no. January, 2003.
    [9] S. Kumagai, J. Alvares, P. H. Blanco, C. Wu, T. Yoshioka, M. Olazar, P. T. Williams., “Novel Ni–Mg–Al–Ca catalyst for enhanced hydrogen production for the pyrolysis – gasification of a biomass / plastic mixture,” J. Anal. Appl. Pyrolysis, vol. 113, pp. 15–21, 2015.
    [10] B. G. Diehl, N. R. Brown, C. W. Frantz, M. R. Lumadue, and F. Cannon, “Effects of pyrolysis temperature on the chemical composition of refined softwood and hardwood lignins,” Carbon N. Y., vol. 60, pp. 531–537, 2013.
    [11] E. Pǎrpǎriţǎ, M. T. Nistor, M. C. Popescu, and C. Vasile, “TG/FT-IR/MS study on thermal decomposition of polypropylene/biomass composites,” Polym. Degrad. Stab., vol. 109, pp. 13–20, 2014.
    [12] K. Azizi, M. Keshavarz Moraveji, and H. Abedini Najafabadi, “Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA,” Bioresour. Technol., vol. 243, pp. 481–491, 2017.
    [13] M. Kumar, R. C. Gupta, and T. Sharma, “Effects of carbonisation conditions on the yield and chemical composition of Acacia and Eucalyptus wood chars,” Biomass and Bioenergy, vol. 3, no. 6, pp. 411–417, 1992.
    [14] R. Garg, N. Anand, and D. Kumar, “Pyrolysis of babool seeds (Acacia nilotica) in a fixed bed reactor and bio-oil characterization,” Renew. Energy, vol. 96, pp. 167–171, 2016.
    [15] M. S. Abbas-Abadi, M. N. Haghighi, H. Yeganeh, and A. G. McDonald, “Evaluation of pyrolysis process parameters on polypropylene degradation products,” J. Anal. Appl. Pyrolysis, vol. 109, pp. 272–277, 2014.
    [16] T. M. Majka, O. Bartyzel, K. N. Raftopoulos, J. Pagacz, A. Leszczyńska, and K. Pielichowski, “Recycling of polypropylene/montmorillonite nanocomposites by pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 119, pp. 1–7, 2016.
    [17] I. Kalargaris, G. Tian, and S. Gu, “Experimental characterisation of a diesel engine running on polypropylene oils produced at different pyrolysis temperatures,” Fuel, vol. 211, no. July 2017, pp. 797–803, 2018.
    [18] S. M. Al-Salem, A. Antelava, A. Constantinou, G. Manos, and A. Dutta, “A review on thermal and catalytic pyrolysis of plastic solid waste (PSW),” J. Environ. Manage., vol. 197, no. 1408, pp. 177–198, 2017.
    [19] A. Demirbas, “Biorefineries: Current activities and future developments,” Energy Convers. Manag., vol. 50, no. 11, pp. 2782–2801, 2009.
    [20] D. Mohan, C. U. Pittman, and P. H. Steele, “Pyrolysis of Wood / Biomass for Bio-oil : A Critical Review,” Energy & Fuesl, vol. 20, no. 4, pp. 848–889, 2006.
    [21] A. Alcala and A. V. Bridgwater, “Upgrading fast pyrolysis liquids: Blends of biodiesel and pyrolysis oil,” Fuel, vol. 109, pp. 417–426, 2013.
    [22] A. V. Bridgwater and G. V. C. Peacocke, “Fast pyrolysis processes for biomass,” Renew. Sustain. energy Rev., vol. 4, no. 1, pp. 1–73, 2000.
    [23] M. K. Bahng, C. Mukarakate, D. J. Robichaud, and M. R. Nimlos, “Current technologies for analysis of biomass thermochemical processing: A review,” Anal. Chim. Acta, vol. 651, no. 2, pp. 117–138, 2009.
    [24] D. Gidaspow, Multiphase flow and fluidization, vol. 55, no. 2. 1994.
    [25] C. T. Crowe, Multiphase Flow Handbook, vol. 1218, no. 36. 2006.
    [26] A. Demirbas, “Combustion characteristics of different biomass fuels,” Prog. Energy Combust. Sci., vol. 30, no. 2, pp. 219–230, 2004.
    [27] L. Sørum, M. G. Grønli, and J. E. I. Hustad, “Pyrolysis characteristics and kinetics of municipal solid wastes,” Fuel, vol. 80, no. 9, pp. 1217–1227, 2001.
    [28] C. Zhou, G. Liu, T. Fang, P. Kwan, and S. Lam, “Bioresource Technology Investigation on thermal and trace element characteristics during co-combustion biomass with coal gangue,” Bioresour. Technol., vol. 175, pp. 454–462, 2015.
    [29] S. S. Kim, H. V. Ly, J. Kim, J. H. Choi, and H. C. Woo, “Thermogravimetric characteristics and pyrolysis kinetics of Alga Sagarssum sp. biomass,” Bioresour. Technol., vol. 139, pp. 242–248, 2013.
    [30] W. Charusiri and N. Numcharoenpinij, “Characterization of the optimal catalytic pyrolysis conditions for bio-oil production from brown salwood (Acacia mangium Willd) residues,” Biomass and Bioenergy, vol. 106, pp. 127–136, 2017.
    [31] A. Ahmed, M. S. Abu Bakar, A. K. Azad, R. S. Sukri, and T. M. I. Mahlia, “Potential thermochemical conversion of bioenergy from Acacia species in Brunei Darussalam: A review,” Renew. Sustain. Energy Rev., vol. 82, no. October 2016, pp. 3060–3076, 2018.
    [32] H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, no. 12–13, pp. 1781–1788, 2007.
    [33] M. Brebu and C. Vasile, “Thermal degradation of Lignin - A review,” Cellul. Chem. Technol., vol. 44, no. 9, pp. 353–363, 2010.
    [34] H. Yang, R. Yan, H. Chen, C. Zheng, D. H. Lee, and D. T. Liang, “In-depth investigation of biomass pyrolysis based on three major components: hemicelluloses, cellulose and lignin,” Energy and Fuels, vol. 20, no. 17, pp. 388–393, 2006.
    [35] M. Brebu and I. Spiridon, “Thermal degradation of various lignins by TG-MS/FTIR and Py-GC-MS,” Therm. Degrad. Var. lignins by TG-MS/FTIR Py-GC-MS, vol. 91, no. 2, pp. 288–295, 2011.
    [36] J. Yu, N. Paterson, J. Blamey, and M. Millan, “Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass,” Fuel, vol. 191, pp. 140–149, 2017.
    [37] Z. Ma, Q. Sun, J. Ye, Q. Yao, and C. Zhao, “Study on the thermal degradation behaviors and kinetics of alkali lignin for production of phenolic-rich bio-oil using TGA-FTIR and Py-GC/MS,” J. Anal. Appl. Pyrolysis, vol. 117, pp. 116–124, 2016.
    [38] J. Jamradloedluk and C. Lertsatitthanakorn, “Characterization and utilization of char derived from fast pyrolysis of plastic wastes,” Procedia Eng., vol. 69, pp. 1437–1442, 2014.
    [39] W. Cai and R. Liu, “Performance of a commercial-scale biomass fast pyrolysis plant for bio-oil production,” Fuel, vol. 182, pp. 677–686, 2016.
    [40] H. Raclavská, A. Corsaro, D. Juchelková, V. Sassmanová, and J. Frantík, “Effect of temperature on the enrichment and volatility of 18 elements during pyrolysis of biomass, coal, and tires,” Fuel Process. Technol., vol. 131, pp. 330–337, 2015.
    [41] A. A. Boateng, D. E. Daugaard, N. M. Goldberg, and K. B. Hicks, “Bench-scale fluidized-bed pyrolysis of switchgrass for bio-oil production,” Ind. Eng. Chem. Res., vol. 46, no. 7, pp. 1891–1897, 2007.
    [42] K. H. Kim, J. Y. Kim, T. S. Cho, and J. W. Choi, “Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida),” Bioresour. Technol., vol. 118, pp. 158–162, 2012.
    [43] M. Ringer, V. Putsche, and J. Scahill, “Large-Scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis,” Nrel/Tp-510-37779, no. November, pp. 1–93, 2006.
    [44] C. Zhao, E. Jiang, and A. Chen, “Volatile production from pyrolysis of cellulose, hemicellulose and lignin,” J. Energy Inst., vol. 90, no. 6, pp. 902–913, 2017.
    [45] T. J. Hilbers, J. Wang, B. Pecha, R. J. M. Westerhof, S. R. A. Kersten, M. R. P. Samaniego, M. G. P. Manuel., “Cellulose-Lignin interactions during slow and fast pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 114, pp. 197–207, 2015.
    [46] J. V. Ortega, A. M. Renehan, M. W. Liberatore, and A. M. Herring, “Physical and chemical characteristics of aging pyrolysis oils produced from hardwood and softwood feedstocks,” J. Anal. Appl. Pyrolysis, vol. 91, no. 1, pp. 190–198, 2011.
    [47] J. Zhao, W. Xiuwen, J. Hu, Q. Liu, D. Shen, and R. Xiao, “Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS,” Polym. Degrad. Stab., vol. 108, pp. 133–138, 2014.
    [48] Y. Xue, S. Zhou, R. C. Brown, A. Kelkar, and X. Bai, “Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor,” Fuel, vol. 156, no. April 2016, pp. 40–46, 2015.
    [49] A. Demirbas, “The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis,” Fuel Process. Technol., vol. 88, no. 6, pp. 591–597, 2007.

    QR CODE
    :::