| 研究生: |
王泰傑 Tai-Jie Wang |
|---|---|
| 論文名稱: |
以非週期性晶疇極化反轉鈮酸鋰晶體實現多波長光參量振盪器之電光選頻研究 Electro-optically spectral-line switchable in mutil-line optical parameter oscillators based on aperiodically poled lithium niobate |
| 指導教授: |
陳彥宏
Yen-Hung Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 照明與顯示科技研究所 Graduate Institute of Lighting and Display Science |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 鈮酸鋰 、光參量振盪器 、電光選頻 、非週期性晶疇極化反轉鈮酸鋰 |
| 外文關鍵詞: | lithium niobate, optical parameter oscillators, switchable, periodically poled lithium niobate |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光參量振盪器為三波長非線性光學下轉換系統,經常被使用在廣域的波段可調同調光源,因而在光通訊、光譜學、光學檢測及兆赫波產生等領域上有廣泛的應用。在鈮酸鋰晶體上,藉由使用準相位匹配技術,不但可以使光參量振盪器具有高度自由的波長設計範圍,並且也能利用最大非線性係數。
配合鈮酸鋰晶體具有的電光效應,能在單一鈮酸鋰晶片上外加y方向電場用以調控光參量訊號偏振態,對光參量訊號進行波長調變、窄頻、選頻等作用。
本實驗利用模擬退火演算法及極化反轉技術,成功將多波長電光偏振調制器及多波長光參量振盪器,整合為單一非週期極化反轉鈮酸鋰晶片,多波長光參量振盪器與電光偏振調制器設計中心波長為光通訊波段1540nm及1550nm,再無外加電場時能產生雙波長光參量振盪器,並能在外加y方向電場360V/mm及790V/mm時,能分別選擇1540nm及1550nm光參量振盪器訊號光,其頻寬分別為0.07nm及0.09nm,並且實驗結果與模擬結果相當符合,成功在鈮酸鋰晶體上實現光通訊波段的電光選頻積體光學元件。
An optical parametric oscillator (OPO) is a three-wave nonlinear wavelength down conversion system, which is often used as a wide band tunable coherent radiation source and thus has been widely used in optical communication, spectroscopy, optical inspection, and other applications. The use of the quasi-phase-matching (QPM) technique in lithium niobate (LiNbO3) crystals not only allows the OPO signals to be highly engineerable in a wide spectral range, but also largely enhances the conversion efficiency due to the access of the maximum nonlinear coefficient d33 of the crystal.
By properly utilizing the electro-optic (EO) effect in a QPM LiNbO3, we can modulate the polarization state of an or multiple input waves, in which the spectrum and bandwidth of OPO signals can be changed, tailored, or/and selected when such an EO QPM polarization mode converter (PMC) is operated with the OPO.
In this study, a multi-wavelength EO PMC and a multi-wavelength optical parametric down converter (OPDC) were successfully integrated in a single aperiodically poled lithium niobate (APPLN) chip. The OPDC and EO PMC were both designed to work at dual wavelengths 1540 nm and 1550 nm in an optical communication band. When this novel integrated APPLN crystal is operated in an optical resonator pumped by a Q-switched 1064-nm laser, we can generate the dual-wavelength signal (of ~0.5 nm linewidth) with this OPO system before any external electric field is applied to the APPLN. When applying electric fields of 360 V/mm and 790 V/mm to the APPLN device, we can select and oscillate only the 1540 nm and only the 1550 nm signals with linewidths of 0.07 nm and 0.09 nm, respectively, in the novel OPO system. The consistency of the simulation and the experimental results show that we have successfully demonstrated the world-first EO frequency selectable mutil-line OPO based on an integrated APPLN in the optical communication band.
參考文獻
[1] A. J. P. Z. Einstein, "Zur quantentheorie der strahlung," vol. 18, pp. 121-128, 1917.
[2] T. Mairnan, "Stimulated optical radiation in ruby," Nature, vol. 4736, pp. 493-494, 1960.
[3] e. P. Franken, A. E. Hill, C. e. Peters, and G. Weinreich, "Generation of optical harmonics," Physical Review Letters, vol. 7, no. 4, p. 118, 1961.
[4] M. Bass, P. Franken, A. Hill, C. Peters, and G. Weinreich, "Optical mixing," Physical Review Letters, vol. 8, no. 1, p. 18, 1962.
[5] J. Giordmaine and R. C. Miller, "Tunable coherent parametric oscillation in LiNb O 3 at optical frequencies," Physical Review Letters, vol. 14, no. 24, p. 973, 1965.
[6] J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, "Interactions between light waves in a nonlinear dielectric," Physical review, vol. 127, no. 6, p. 1918, 1962.
[7] W. Zachariasen, "Skr. Norske Vid," Ada., Oslo, Mat. Naturv, vol. 4, 1928.
[8] A. A. Ballman, "Growth of piezoelectric and ferroelectric materials by the CzochraIski technique," Journal of the American Ceramic Society, vol. 48, no. 2, pp. 112-113, 1965.
[9] P. Lerner, C. Legras, and J. Dumas, "Stoechiométrie des monocristaux de métaniobate de lithium," Journal of Crystal Growth, vol. 3, pp. 231-235, 1968.
[10] R. L. Byer, J. Young, and R. Feigelson, "Growth of high‐quality LiNbO3 crystals from the congruent melt," Journal of Applied Physics, vol. 41, no. 6, pp. 2320-2325, 1970.
[11] P. Powers, T. J. Kulp, and S. Bisson, "Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design," Optics letters, vol. 23, no. 3, pp. 159-161, 1998.
[12] S. E. Miller, "Integrated optics: An introduction," The Bell System Technical Journal, vol. 48, no. 7, pp. 2059-2069, 1969.
[13] C. Hung, "積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件," National Central University, 2009.
[14] H.-P. Chung, "量子與積體鈮酸鋰光路與結構晶疇元件研究," National Central University, 2017.
[15] W.-K. Chang, "一維/二維晶疇工程準相位匹配元件作為 Q 調制器,(多) 波長轉換器及頻譜電光調控器並應用於雷射及光參量振盪器之研究," National Central University, 2015.
[16] Y. Amnon and P. Yeh, "Optical waves in crystals: propagation and control of laser radiation," New York City, NY: Wiley, 1984.
[17] D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, n e, in congruent lithium niobate," Optics letters, vol. 22, no. 20, pp. 1553-1555, 1997.
[18] B. S. Guru and H. R. Hiziroglu, Electromagnetic field theory fundamentals. Cambridge university press, 2009.
[19] A. Yariv and P. Yeh, Optical waves in crystals. Wiley New York, 1984.
[20] I. Šolc, "Birefringent chain filters," JOSA, vol. 55, no. 6, pp. 621-625, 1965.
[21] Y. C. Huang, "Principles of Nonlinear Optics," Course Reader, 2002.
[22] B.-Y. Gu, B.-Z. Dong, Y. Zhang, and G.-Z. Yang, "Enhanced harmonic generation in aperiodic optical superlattices," Applied physics letters, vol. 75, no. 15, pp. 2175-2177, 1999.
[23] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," science, vol. 220, no. 4598, pp. 671-680, 1983.
[24] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, "Equation of state calculations by fast computing machines," The journal of chemical physics, vol. 21, no. 6, pp. 1087-1092, 1953.
[25] 鍾宏彬, "以單一非週期性晶疇極化反轉鈮酸鋰電光晶片達成可調變多波長之窄頻光參量產生/振盪器之研究," 中央大學光電科學研究所學位論文, pp. 1-78, 2012.
[26] H.-p. Chung, "以單一非週期性晶疇極化反轉鈮酸鋰電光晶片達成可調變多波長之窄頻光參量產生/振盪器之研究," National Central University, 2012.
[27] F. Wu, X. Chen, X. Zeng, Y. Chen, and Y. Xia, "Generation of multi-wavelength light sources for optical communications in aperiodic optical superlattice," Chinese Optics Letters, vol. 3, no. 12, pp. 708-711, 2005.
[28] C. Lin, Y. Chen, S. Lin, C. Chang, Y. Huang, and J. Chang, "Electro-optic narrowband multi-wavelength filter in aperiodically poled lithium niobate," Optics express, vol. 15, no. 15, pp. 9859-9866, 2007.
[29] M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First‐order quasi‐phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second‐harmonic generation," Applied Physics Letters, vol. 62, no. 5, pp. 435-436, 1993.
[30] L. Myers, G. Miller, R. Eckardt, M. Fejer, R. Byer, and W. Bosenberg, "Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO 3," Optics letters, vol. 20, no. 1, pp. 52-54, 1995.