跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉耀澧
Yao-Li LIu
論文名稱: 空間電荷極限電流密度之理論模擬研究
The Theoretical and Simulation Study of Space-Charge Limited Current Density
指導教授: 陳仕宏
Shih-Hung Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 189
中文關鍵詞: 電漿電子束空間電荷極限電流粒子式模擬
外文關鍵詞: plasma, electron beam, space charge, limited current, particle-in-cell simulation
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 帶電粒子束在科學、醫學、工業以及軍事上面有很多的用途。因此
    對於帶電粒子束各種特性的掌握度越高,在應用上的設計與現象的解釋
    就越有幫助。而空間電荷效應限制帶電粒子束的總電荷數,且直接影響
    電子束的品質,因此這方面研究也成為真空電子學的重要之研究議題。
    帶電粒子束所注入、加速與形成的區域主要分為加速區或飄移區。
    通常是在加速區陰極產生帶電粒子,經過加速腔體把帶電粒子加速到一
    定的能量,再導入飄移區。然而,空間電荷極限電流會限制帶電粒子束
    通過腔體的最大電流。空間電荷極限電流就是來自於帶電粒子束在腔體
    中的空間電荷效應對於系統的限制。這幾年來由於科技的進步,帶電粒
    子束的能量越來越高,束寬越來越窄。傳統用來估計空間電荷極限電流
    的公式已不敷使用,因此必須對於理論加以修正。
    經過這幾十年來的發展,空間電荷極限電流的理論已經可以考慮相
    對論性效應、有限束寬粒子束與短脈衝等幾何效應。但仍然有許多議題
    尚未被探討。首先,目前的理論都只考慮靜電模型,電磁效應基本上是
    忽略不考慮的。因此我們先利用了電磁的二維粒子式電漿模擬來研究電
    磁效應對於加速區空間電荷極限電流的影響。我們發現在短脈衝且有限
    束寬的情況下,電磁效應是不能忽略的。我們的研究結果也指出靜電模
    型的適用範圍為長脈衝的粒子束,或是短脈衝但大束寬的粒子束。
    目前大部分的研究都是探討加速區的空間電荷極限電流,但對於飄
    移區,就相對較少人研究。因此我們針對飄移區,發展了二維長脈衝相
    對論性的空間電荷極限電流理論, 並研究了超過極限電流時帶電粒子束
    的動力學行為。我們透過二維靜電粒子式電漿模擬來驗證我們的理論,
    i
    也探討如何在模擬中決定極限電流。
    而後我們發展了一套二維長脈衝的統一理論把加速區與飄移區連結
    起來, 並研究其空間電荷極限電流以及大於極限時的動力學行為。理
    論也說明了何時我們可以把系統視為加速區,何時能視為飄移區。研究
    結果指出二維的空間電荷極限電流主要由幾何效應所主導, 而當注入電
    流超過極限時,則是由粒子入射的初始速度來主導系統的動力學行為。
    除了長脈衝粒子束外,我們也利用了一維的電荷薄片模型研究了電
    子束團在加速區以及飄移區的最大電荷密度。電子束團可應用在時間解
    析的電子顯微鏡、自由電子雷射、Smith-Purcell 輻射...等機制, 也因此空間電荷效應在電子束團的應用上扮演著很重要角色。我們發展了一套方法能夠很快地決定在腔體中最適當的電荷密度,以避免電子束團抵達陽極的時序不會因空間電荷效應被破壞。此方法也可以用在相對論性的範疇,因此可適用性非常廣。
    本論文針對空間電荷極限電流的理解在深度與廣度上的提升。此
    外,理論模型以及模擬方法也有助於相關應用的發展與研究。


    Charged particle beams have intensive applications on science, medicine, industry and military. Hence, much more information and understandings from charged particle beams, much more advantages on the practical designs and explanations of phenomena. Space charge effect limits the total number of charges and affects the beam quality of the charged particle beam directly, so that the study of this research topic becomes an important research issue in vacuum electronics. Basically, the injection, acceleration and the formation of a charged
    particle beams are operated in accelerating regions or drift regions. The charge particle sources are usually generated from cathode and accelerated up to the designed energy in the accelerating region, and then injected into the drift region for the practical use. However, Space Charge Limited (SCL) Current would limit the maximum current across the accelerating
    region or drift region. The SCL current results from the limit due to the space charge effect of the charge particle beam in the system. Thanks to the improvements of science and technology, the charge particle beams have much higher energy and thinner beam width. The traditional formula to estimate the SCL current is no longer available, and thus needs to be modi ed. In the past few decades, the theory of the SCL current has been revised extensively to consider various effects such as nite emission area, short pulse length, relativistic effects, and etc. However, there are still many issues need to be discussed. First of all, the current theories only consider
    the electrostatic (ES) model and ignore the electromagnetic (EM) effects. Thus we rst used the two-dimensional (2D) EM particle-in-cell (PIC) simulation to study the EM effects on the SCL current in an accelerating region. We found that EM effects cannot be ignored when a short-pulse and nite-width charge particle beam is considered. Our research results
    also indicated that ES model is only available for long-pulse cases or short-pulse beams but with larger width.
    The most of the research regarding the SCL current focus on the accelerating region, but the drift region draws less attentions. For this reason, we developed a 2D ES relativistic SCL current theory for drift region, and also studied the dynamical behavior when the injected current exceeds the
    threshold. It is veri ed by 2D ES PIC simulation, and the determination
    of SCL current in the simulation was also discussed.
    We further developed a 2D long-pulse uni ed theory to combine the accelerating region and drift region. The SCL current and the dynamical behavior when the injected current exceeds the threshold were derived, and the transition from the accelerating region to the drift region also studied. The theoretical analysis shows that the 2D SCL current is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the initial velocity at higher current density exceeding the SCL current density.
    Besides the long pulse charge particle beam, a charge sheet model was also proposed for the study of the maximum charge density of an electron pulse train injected to in an accelerating region or a drift region with uniform temporal pulse separation. An electron pulse train can be applied to the time resolved electron microscopy, Smith-Purcell radiation and free electron lasers, thus the space charge effect of an electron pulse train plays an important role for the applications. We developed a efficient way to determine the maximum charge density without the temporal distortion when the pulse train arriving at the anode. The method can also be applied in relativistic regime and has wide range applications.
    This dissertation deepens and widens the understanding of SCL current. Moreover, these theoretical models and simulation methods are useful for the researches and developments of the future corresponding applications.

    1 Introduction 1 1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Classical Child-Langmuir law . . . . . . . . . . . . 4 1.2.2 Relativistic Child-Langmuir law . . . . . . . . . . . 5 1.2.3 Short-pulse Child-Langmuir law . . . . . . . . . . . 6 1.2.4 Multi-dimensional Child-Langmuir law . . . . . . . 8 1.2.5 Child-Langmuir law with initial velocity injection . 10 1.2.6 Space charge limited current in a drift space . . . . 11 1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Two-dimensional Electromagnetic Child-Langmuir Law of a Short-pulse Electron Flow 15 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Theory and Simulation Method . . . . . . . . . . . . . . . 18 2.3 Numerical Results and 2D EM CL Law . . . . . . . . . . . 21 2.4 Equivalent Circuit Models for ES and EM CL Laws . . . . 31 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Two-dimensional Relativistic Space Charge Limited Cur- rent Flow in Drift Space 35 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.1 1D Classical SCL Current in a Drift Space . . . . . 37 3.1.2 1D Relativistic SCL Current in a Drift Space . . . 38 3.1.3 Bridges's 2D Classical SCL Current in a Drift Space 40 3.2 2D SCL Current in a Drift Space . . . . . . . . . . . . . . 43 3.2.1 Theoretical Calculations . . . . . . . . . . . . . . . 43 3.2.2 Simulation Methods . . . . . . . . . . . . . . . . . 46 3.3 2D Current Flow Beyond SCL Current in a Drift Space . . 52 3.3.1 1D Static Theory . . . . . . . . . . . . . . . . . . . 52 3.3.2 2D Static Theory . . . . . . . . . . . . . . . . . . . 54 3.3.3 Simulation Results . . . . . . . . . . . . . . . . . . 57 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4 Uni ed Theory for the Space Charge Limited Current Density in a Vacuum Gap 66 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2 1D SCL Current Density . . . . . . . . . . . . . . . . . . . 68 4.3 2D SCL Current Density . . . . . . . . . . . . . . . . . . . 72 4.4 Current Flow Beyond SCL Current . . . . . . . . . . . . . 77 4.5 Summary and Conclusion . . . . . . . . . . . . . . . . . . 82 5 Maximal Charge Injection of Consecutive Electron Pulses with Uniform Temporal Pulse Separation 83 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.2 The charge sheet model in a diode . . . . . . . . . . . . . . 87 5.2.1 Single charge sheet in a diode . . . . . . . . . . . . 87 5.2.2 Two charge sheets in a diode . . . . . . . . . . . . . 89 5.2.3 Three charge sheets in a diode . . . . . . . . . . . . 92 5.2.4 N charge sheets in a diode . . . . . . . . . . . . . . 95 5.3 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . 98 5.4 Results and Discussions . . . . . . . . . . . . . . . . . . . 100 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6 Maximal Charge Injection of an Electron Pulses Train in a Drift Space 107 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2 The charge sheet model in a drift space . . . . . . . . . . . 110 6.2.1 Single charge sheet in a drift space . . . . . . . . . 110 6.2.2 Two charge sheets in a drift space . . . . . . . . . . 113 6.2.3 Four charge sheets in a drift space . . . . . . . . . . 115 6.2.4 Three charge sheets in a drift space . . . . . . . . . 119 6.2.5 Five charge sheets in a drift space . . . . . . . . . . 122 6.2.6 N charge sheets in a drift space . . . . . . . . . . . 125 6.3 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . 129 6.4 Results and Discussions . . . . . . . . . . . . . . . . . . . 131 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7 Conclusions and Future Works 140 7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 140 7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.2.1 Space-Charge Limited Current Density in Free Elec- tron Laser . . . . . . . . . . . . . . . . . . . . . . . 143 7.2.2 2D Transition from eld emission to SCL current . 145 7.2.3 J-V-T characteristics of graphene-cathode-based vac- uum diode . . . . . . . . . . . . . . . . . . . . . . . 148 7.3 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

    [1] C. K. Birdsall. Electron Dynamics of Diode Regions. Elsevier, 1966.
    [2] D. B. Williams and C. B. Carter. Transmission Electron Microscopy:
    A Textbook for Materials Science, 2nd edition. New York: Springer,
    2009.
    [3] A. H. Zewail and J. M. Thomas. 4D Electron Microscopy Imaging
    in Space and Time. London Hackensack, NJ Imperial College Press,
    2009.
    [4] F. J. Garcia de Abajo. Optical excitations in electron microscopy.
    Rev. Mod. Phys., 82:209, 2010.
    [5] H. P. Freund and T. M. Antonsen. Principles of Free-electron Lasers.
    Springer Science and Business Media, 1996.
    [6] J. M. J. Madey. Stimulated emission of bremsstrahlung in a periodic
    magnetic eld. J. Appl. Phys., 42:1906, 1971.
    [7] D. A. G. Deacon, L. R. Elias, J. M. J. Madey, G. J. Ramian, H. A.
    Schwettman, and T. I. Smith. "First Operation of a Free-Electron
    Laser". Phys. Rev. Lett., 38:892, 1977.
    [8] B. W. J. McNeil and N. R. Thompson. "X-ray free-electron lasers".
    Nat. Photonics, 4:814, 2010.
    [9] C. Pellegrini. The history of x-ray free-electron lasers. Eur. Phys.
    J. H, 37:659, 2012.
    [10] G. N. Fursey. Field Emission in Vacuum Microelectronics. New
    York: Springer, 2005.
    [11] S. E. Tsimring. Electron beams and microwave vacuum electronics.
    Hoboken, NJ: Wiley, 2007.
    [12] J. Eichmeier and M. K. A. Thumm. Vacuum electronics components
    and devices. Berlin; New York: Springer, 2008.
    [13] T. Terasawa, T. Dvorak, G. Raman S. Ip, J. Lau, and T. A. Trikali-
    nos. Systematic review: Charged-particle radiation therapy for can-
    cer. Ann. Intern. Med., 151:556, 2009.
    [14] P. Sprawls. Physical principles of medical imaging. Aspen Publish-
    ers, 1993.
    [15] I. R. McClelland and W. D. of E. H. Technology. X-Ray Equipment
    Maintenance and Repairs Workbook for Radiographers and Radio-
    logical Technologists. World Health Organization, 2004.
    [16] R. H. Fowler and L. Nordheim. Electron emission in intense electric
    elds. Proc. R. Soc. Lond. Math. Phys. Eng. Sci., 119:173, 1928.
    [17] O. W. Richardson. Thermionic phenomena and the laws which gov-
    ern them. Nobel Lect. Dec., 12:1929, 1929.
    [18] W. B. Nottingham. Thermionic emission. Cambridge: Mas-
    sachusetts Institute of Technology, Research Laboratory of Electron-
    ics, 1956.
    [19] W. Hant, NORTHROP RESEARCH, and TECHNOLOGY CEN-
    TER PALOS VERDES PENINSULA CA. Thermionic Field Emis-
    sion Gun. Ft. Belvoir: Defense Technical Information Center, 1978.
    [20] L. A. DuBridge. A further experimental test of fowler theory of
    photoelectric emission. Phys. Rev., 39:108, 1932.
    [21] L. A. DuBridge. Theory of the energy distribution of photoelectrons.
    Phys. Rev., 727:108, 1933.
    [22] K. L. Jensen, P. G. O Shea, and D. W. Feldman.
    [23] K. L. Jensen. General formulation of thermal eld and photoinduced
    electron emission. J. Appl. Phys., 102:024911, 2007.
    [24] L. Dewan. Design and construction of a cyclotron capable of accel-
    erating protons to 2 MeV. PhD thesis, Massachusetts Institute of
    Technology, 2007.
    [25] W. P. Leemans E. Esarey, C. B. Schroeder. Physics of laser-driven
    plasma-based electron accelerators. Reviews of Modern Physics,
    81:1229, 2009.
    [26] M. Passoni A. Macchi, M. Borghesi. Ion acceleration by superintense
    laser-plasma interaction. Reviews of Modern Physics, 85:751, 2013.
    [27] C. D. Child. Discharge from hot cao. Phys. Rev. Ser. I, 32:492,
    1911.
    [28] I. Langmuir. The effect of space charge and residual gases on
    thermionic currents in high vacuum. Phys. Rev., 2:450, 1913.
    [29] R. C. Davidson. Physics of Nonneutral Plasmas. CO-PUBLISHED
    WITH WORLD SCIENTIFIC PUBLISHING CO, 2001.
    [30] A. H. Zewail. 4d ultrafast electron diffraction, crystallography, and
    microscopy. Annu. Rev. Phys. Chem., 57:65, 2006.
    [31] P. Baum and A. H. Zewail. Attosecond electron pulses for 4d diffrac-
    tion and microscopy. Proc. Natl. Acad. Sci., 328:18409, 2007.
    [32] A. H. Zewail. "Four-Dimensional Electron Microscopy". Science,
    328:187, 2010.
    [33] J. S. Baskin, H. Liu, and A. H. Zewail. "4D multiple-cathode ultrafast
    electron microscopy". Proc. Natl. Acad. Sci., 111:10479, 2014.
    [34] B. Barwick and A. H. Zewail. Photonics and plasmonics in 4d ul-
    trafast electron microscopy. ACS Photonics, 2:1391, 2015.
    [35] B. Faatz, A. A. Fateev, K. Flottmann, D. Nolle, P. Piot, E. L.
    Saldin, H. Schlarb, E. A. Schneidmiller, S. Schreiber, D. Sertore,
    K. P. Sytchev, and M. V. Yurkov. "VUV FEL driven RF gun".
    Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers De-
    tect. Assoc. Equip., 507:350, 2003.
    [36] M. D. Perry, D. Pennington, B. C. Stuart, G. Tietbohl, J. A. Britten,
    C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H. T. Powell,
    M. Vergino, and V. Yanovsky. Vuv fel driven rf gun. Opt. Lett.,
    24:160, 1999.
    [37] A. Valfells, D. W. Feldman, M. Virgo, P. G. O Shea, and Y. Y. Lau.
    Effects of pulse-length and emitter area on virtual cathode formation
    in electron guns. Phys. Plasmas 1994-Present, 9:2377, 2002.
    [38] L. K. Ang and P. Zhang. Ultrashort-pulse child-langmuir law in the
    quantum and relativistic regimes. Phys. Rev. Lett., 98:164802, 2007.
    [39] Y. Y. Lau. "Simple Theory for the Two-Dimensional Child-
    Langmuir Law". Phys. Rev. Lett., 87:278301, 2001.
    [40] J. W. Luginsland, Y. Y. Lau, and R. M. Gilgenbach. Two-
    dimensional child-langmuir law. Phys. Rev. Lett., 77:4668, 1996.
    [41] R. J. Umstattd and J. W. Luginsland. Two-dimensional space-
    charge-limited emission: Beam-edge characteristics and applica-
    tions. Phys. Rev. Lett., 87:145002, 2001.
    [42] W. S. Koh, L. K. Ang, and T. J. T. Kwan. Three-dimensional
    childlangmuir law for uniform hot electron emission. Phys. Plas-
    mas 1994-Present, 12:053107, 2005.
    [43] R. K. Li and P. Musumeci. Single-shot mev transmission electron
    microscopy with picosecond temporal resolution. Phys. Rev. Appl.,
    2:024003, 2014.
    [44] W. D. Coolidge. "A Powerful Roentgen Ray Tube with a Pure Elec-
    tron Discharge". Arch. Roentgen Ray, 18:359, 1914.
    [45] W. D. Coolidge. A new radiator type of hot cathode roentgen-ray
    tube. Arch. Radiol. Electrother., 23:11, 1918.
    [46] W. D. Coolidge. "Dental Type". J. Rontgen Soc., 15:125, 1919.
    [47] W. Schottky. ber den austritt von elektronen aus gluhdrhten bei
    verzgernden potentialen. Ann. Phys., 349:1011, 1914.
    [48] T. C. Fry. The thermionic current between parallel plane electrodes
    velocities of emission distributed according to maxwells law. Phys.
    Rev., 17:441, 1921.
    [49] I. Langmuir. The effect of space charge and initial velocities on the
    potential distribution and thermionic current between parallel plane
    electrodes. Phys. Rev., 21:419, 1923.
    [50] G. Jaffe. On the currents carried by electrons of uniform initial
    velocity. Phys. Rev., 65:91, 1944.
    [51] G. Jaffe. On the currents carried by electrons of uniform initial
    velocity. Phys. Rev., 66:30, 1944.
    [52] P. Zhang, W. S. Koh, L. K. Ang, and S. H. Chen. Short-pulse
    space-charge-limited electron
    ows in a drift space. Phys. Plasmas
    1994-Present, 15:063105, 2008.
    [53] W. B. Bridges, J. I. Frey, and C. K. Birdsall. Limiting stable currents
    in bounded electron and ion streams. IEEE Trans. Electron Devices,
    12:264, 1965.
    [54] D. I. Proskurovsky, V. P. Rotshtein, G. E. Ozur, A. B. Markov,
    D. S. Nazarov, V. A. Shulov, Y. F. Ivanov, and R. G. Buchheit.
    Pulsed electron-beam technology for surface modi cation of metallic
    materials. IEEE Trans. Electron Devices, 16:2480, 1998.
    [55] C. Watson, I. Janik, T. Zhuang, O. Charvatova, R. J. Woods, and
    J. S. Sharp. Pulsed electron beam water radiolysis for submicrosec-
    ond hydroxyl radical protein footprinting. Anal. Chem., 81:2496,
    2009.
    [56] R. Okamura and N. Kawashima. Plasma heating by a short pulse
    width relativistic electron beam. Phys. Lett. A, 54:101, 1975.
    [57] M. A. Kodis, K. L. Jensen, E. G. Zaidman, B. Goplen, and D. N.
    Smithe. "operation and optimization of gated eld emission arrays
    in inductive output ampli ers. Phys. Lett. A, 54:970, 1996.
    [58] M. Arbel, A. Abramovich, A. L. Eichenbaum, A. Gover, H. Klein-
    man, Y. Pinhasi, , and I. M. Yakover. Superradiant and stimulated
    superradiant emission in a prebunched beam free-electron maser.
    Phys. Rev. Lett., 86:2561, 2001.
    [59] D. H. Dowell, S. Joly, A. Loulergue, J. P. de Brion, and G. Haouat.
    Observation of space-charge driven beam instabilities in a radio fre-
    quency photoinjector. Phys. Plasmas 1994-Present, 4:3369, 1997.
    [60] D. Sertore, S. Schreiber, K. Floettmann, F. Stephan, K. Zapfe, and
    P. Michelato. First operation of cesium telluride photocathodes in
    the ttf injector rf gun. Nucl. Instrum. Methods Phys. Res. Sect.
    Accel. Spectrometers Detect. Assoc. Equip., 445:422, 2000.
    [61] H. R. Jory and A. W. Trivelpiece. Exact relativistic solution for
    the one-dimensional diode. Nucl. Instrum. Methods Phys. Res. Sect.
    Accel. Spectrometers Detect. Assoc. Equip., 40:3924, 1969.
    [62] Y. Y. Lau, D. Chernin, D. G. Colombant, and P.-T. Ho. "Quantum
    extension of Child-Langmuir law". Phys. Rev. Lett., 66:1446, 1991.
    [63] L. Ang, T. Kwan, and Y. Lau. New scaling of child-langmuir law in
    the quantum regime. Phys. Rev. Lett., 91:208303, 2003.
    [64] W. S. Koh, L. K. Ang, and T. J. T. Kwan. Multidimensional
    short-pulse space-charge-limited
    ow. Phys. Plasmas 1994-Present,
    13:063102, 2006.
    [65] J. W. Luginsland, Y. Y. Lau, R. J. Umstattd, and J. J. Watrous.
    Beyond the child-langmuir law: A review of recent results on multi-
    dimensional space-charge-limited
    ow. Phys. Plasmas 1994-Present,
    9:2371, 2002.
    [66] L. K. Ang, W. S. Koh, Y. Y. Lau, and T. J. T. Kwan. space-charge-
    limited
    ows in the quantum regimea. Phys. Plasmas 1994-Present,
    13:056701, 2006.
    [67] F. S. Kuo, H. C. Hu, , and S. C. Tseng. Nonlinear effects of rela-
    tivistic electron beams observed by numerical simulation. Chin. J.
    Phys., 21:144, 1983.
    [68] H. Alfven. On the motion of cosmic rays in interstellar space. Phys.
    Rev., 55:425, 1939.
    [69] C. Nieter and J. R. Cary. Vorpal: a versatile plasma simulation
    code. J. Comput. Phys., 196:448, 2004.
    [70] S. G. Biedron, J. W. Lewellen, S. V. Milton, N. Gopalsami, J. F.
    Schneider, L. Skubal, Y. li, M. Virgo, G. P. Gallerano, A. Doria,
    E. Giovenale, G. Messina, and I. P. Spassovsky. Compact, high-
    power electron beam based terahertz sources. Proc. IEEE, 95:1666,
    2007.
    [71] S. Sun and L. K. Ang. Onset of space charge limited current for eld
    emission from a single sharp tip. Phys. Plasmas, 19:033107, 2012.
    [72] S. Sun and L. K. Ang. Analysis of nonuniform eld emission from a
    sharp tip emitter of lorentzian or hyperboloid shape. J. Appl. Phys.,
    19:144902, 2012.
    [73] H. Bluhm. Pulsed Power Systems: Principles and Applications.
    Berlin: Springer, 2006.
    [74] A. S. Gilmour. Microwave Tubes. Dedham, MA: Artech House
    Publishers, 1986.
    [75] P. H. Siegel. Terahertz technology. IEEE Trans. Microw. Theory
    Tech., 50:910, 2002.
    [76] Y. Li and K.-J. Kim. Nonrelativistic electron bunch train for co-
    herently enhanced terahertz radiation sources. Appl. Phys. Lett.,
    92:014101, 2008.
    [77] R. B. Miller. An Introduction to the Physics of Intense Charged
    Particle Beams. Plenum Press, 1982.
    [78] E. W. B. Gill. Xcix. a space charge effect. Philos. Mag. Ser. 6,
    49:993, 1925.
    [79] Y. N. Gartstein and P. S. Ramesh. Hysteresis and self-sustained
    oscillations in space charge limited currents. J. Appl. Phys., 83:2958,
    1998.
    [80] Y. Zhu and L. K. Ang. Child-langmuir law in the coulomb blockade
    regime. Appl. Phys. Lett., 98:051502, 2011.
    [81] Y. Zhu, P. Zhang, A. Valfells, L. Ang, and Y. Lau. Novel scaling
    laws for the langmuir-blodgett solutions in cylindrical and spherical
    diodes. Phys. Rev. Lett, 110:265007, 2013.
    [82] Y. L. Liu, S. H. Chen, W. S. Koh, and L. K. Ang. Two-dimensional
    relativistic space charge limited current
    ow in the drift space. Phys.
    Plasmas 1994-Present, 21:043101, 2014.
    [83] E. Riska. "the development of the electron microscope and of elec-
    tron microscopy. EMSA Bull, 18:53, 1988.
    [84] G. N. Hatsopoulos. The thermo-electron engine. PhD thesis, Mas-
    sachusetts Institute of Technology, 1956.
    [85] G. N. Hatsopoulos and J. Kaye. Measured thermal efficiencies of
    a diode con guration of a thermo electron engine. J. Appl. Phys.,
    29:1124, 1958.
    [86] S.-J. Liang and L. K. Ang. Electron thermionic emission from
    graphene and a thermionic energy converter. IEEE Trans. Electron
    Devices, 3:014002, 2015.
    [87] W. Czarczynski and J. Sobanski. Virtual cathode oscillator (vir-
    cator) modes. 12th International Conference on Microwaves and
    Radar, 3:848, 1998.
    [88] E. Bruche. Elektronenmikroskopische abbildung mit lichtelek-
    trischen elektronen. Z. Phys., 86:448, 1933.
    [89] D. Bayer, C. Wiemann, O. Gaier, M. Bauer, , and M. Aeschlimann.
    Time-resolved 2ppe and time-resolved peem as a probe of lsp's in
    silver nanoparticles. J. Nanomater., 2008:249514, 2008.
    [90] H. Spiecker, O. Schmidt, C. Ziethen, D. Menke, U. Kleineberg, R. C.
    Ahuja, M. Merkel, U. Heinzmann, , and G. Schonhense. Time-
    of-
    ight photoelectron emission microscopy tof-peem: rst results.
    Nucl. Instrum.Methods Phys. Res., Sect. A, 406:499, 1998.
    [91] G. H. Fecher, O. Schmidt, Y. Hwu, , and G. Schonhense. Multi-
    photon photoemission electron microscopy using femtosecond laser
    radiation. J. Electron.Spectrosc. Relat. Phenom., 126:77, 2002.
    [92] E. Bauer. A brief history of peem. J. Electron. Spectrosc. Relat.
    Phenom., 10:314, 2012.
    [93] M. R. Freeman and W. K. Hiebert. Spin Dynamics in Con ned
    Magnetic Structures I. Springer, 2002, 2002.
    [94] S. Woutersen, U. Emmerichs, , and H. J. Bakker. Femtosecond mid-
    ir pump-probe spectroscopy of liquid water: Evidence for a two-
    component structure. Science, 278:658, 1997.
    [95] H. S. Sim, S. Park, T.-H. Kim, Y. K. Choi, J. S. Lee, and S. H.
    Lee. Femtosecond laser pulse train effect on optical characteristics
    and nonequilibrium heat transfer in thin metal lms. Mater. Trans.,
    51:1156, 2010.
    [96] M.-W. Lin, Y.-L. Liu, S.-H. Chen, and I. Jovanovic. "particle-in-
    cell simulations of quasi-phase matched direct laser electron accel-
    eration in density-modulated plasma waveguides. Phys. Plasmas,
    21:093109, 2014.
    [97] P. Zhang, L. K. Ang, and A. Gover. Enhancement of coherent smith-
    purcell radiation at terahertz frequency by optimized grating, pre-
    bunched beams, and open cavity. Phys. Rev. Spec. Top. - Accel.
    Beams, 18:020702, 2015.
    [98] E. Chiadroni, M. P. Anania, M. Artioli, A. Bacci, M. Bellaveglia,
    A. Cianchi, F. Ciocci, G. Dattoli, D. Di Giovenale, G. Di Pirro,
    M. Ferrario, G. Gatti, L. Giannessi, A. Mostacci, P. Musumeci,
    L. Palumbo, A. Petralia, V. Petrillo, R. Pompili, C. Ronsivalle,
    A. R. Rossi, C. Vaccarezzaand, and F. Villa. Two color fel driven
    by a comb-like electron beam distribution. Phys. Procedia, 52:27,
    2014.
    [99] M. Dashcasan and E. Barati. Coherent contribution of consecu-
    tive electron rescatterings in the extreme ultraviolet supercontin-
    uum. Phys. Rev., 89:043412, 2014.
    [100] S. J. Smith and E. M. Purcell. Visible light from localized surface
    charges moving across a grating. Phys. Rev., 92:106, 1953.
    [101] P. Zhang. Scaling for quantum tunneling current in nano- and
    subnano-scale plasmonic junctions. Sci. Rep., 5:9826, 2015.
    [102] Y. L. Liu, P. Zhang, S. H. Chen, and L. K. Ang. Maximal charge
    injection of consecutive electron pulses with uniform temporal pulse
    separation. Phys. Plasmas, 22:084504, 2015.
    [103] M.-W. Lin and I. Jovanovic. Test particle simulation of direct laser
    acceleration in a density-modulated plasma waveguide. Phys. Plas-
    mas 1994-Present, 19:113104, 2012.
    [104] A. Pedersen, A. Manolescu, , and A. Valfells. Space-charge modu-
    lation in vacuum microdiodes at thz frequencies. Phys. Rev. Lett,
    104:175001, 2010.
    [105] K. Torfason, A. Valfells, and A. Manolescu. Molecular dynamics
    simulations of eld emission from a planar nanodiode. Phys. Plas-
    mas, 22:033109, 2015.
    [106] K. L. Jensen, D. A. Shiffer, I.M. Rittersdorf, J. L. Lebowitz, J. R.
    Harris, Y. Y. Lau, J. J. Petillo, W. Tang, and J.W. Luginsland.
    Discrete space charge affected eld emission: Flat and hemisphere
    emitters. J. Appl. Phys, 117:194902, 2015.
    [107] E. Hemsing, G. Stupakov, D. Xiang, and A. Zholents. Beam by
    design: Laser manipulation of electrons in modern accelerators. Rev.
    Mod. Phys., 86:897, 2014.
    [108] H. Motz. Applications of the radiation from fast electron beams. J.
    Appl. Phys., 22:527, 1951.
    [109] H. Motz, W. Thon, and R. N. Whitehurst. Experiments on radiation
    by fast electron beams. J. Appl. Phys., 24:826, 1953.
    [110] W. H. Louisell, J. F. Lam, and D. A. Copeland. Effect of space
    charge on free-electron-laser gain. Phys. Rev. A, 18:655, 1978.
    [111] C.-C. Shih and A. Yariv. Single-electron analysis of the space-charge
    effect in free-electron lasers. Phys. Rev. A, 22:2717, 1980.
    [112] H. P. Freund, P. Sprangle, and C. M. Tang. Effect of
    uctuating
    space-charge elds on sideband instabilities in free-electron lasers.
    Phys. Rev. A, 25:3121, 1982.
    [113] G. San-Kui. Space-charge and axial- eld effects in a free-electron
    laser with an axial-guide magnetic eld. J. Phys. Appl. Phys.,
    25:1289, 1992.
    [114] K. H. Tsui. Superradiant free electron laser with space charge eld.
    Opt. Commun., 90:283, 1992.
    [115] K. H. Tsui. Wall shorting of space charge eld in free electron lasers.
    Opt. Commun., 91:215, 1992.
    [116] Z.-M. Dai, X.-F. Zhao, and F.-J. Yang. Space-charge effects in a
    free-electron laser with a two-frequency undulator. J. Phys. Appl.
    Phys., 27:2461, 1994.
    [117] E. Peter, A. Endler, F. B. Rizzato, , and A. Serbeto. "Mixing and
    space-charge effects in free-electron lasers". Phys. Plasmas 1994-
    Present, 20:123104, 2013.
    [118] K. Hacker. Longitudinal space charge assisted echo seeding of a free-
    electron laser with laser-spoiler noise suppression. Phys. Rev. Spec.
    Top. - Accel. Beams, 17:090702, 2014.
    [119] H. Fares. Space-charge effects and gain in cherenkov free-electron
    lasers. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers
    Detect. Assoc. Equip., 773:154, 2015.
    [120] Y. Y. Lau, Y. Liu, and R. K. Parker. Electron emission from the
    fowlernordheim relation to the childlangmuir law. Phys. Plas-
    mas 1994-Present, 1:2082, 1994.
    [121] Y. Feng and J. P. Verboncoeur. Transition from fowler-nordheim
    eld emission to space charge limited current density. Phys. Plasmas
    1994-Present, 13:073105, 2006.
    [122] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
    and A. K. Geim. The electronic properties of graphene. Rev. Mod.
    Phys., 81:109, 2009.
    [123] S. Sun, L. K. Ang, D. Shiffler, and J. W. Luginsland. Klein tun-
    nelling model of low energy electron eld emission from single-layer
    graphene sheet. Appl. Phys. Lett., 99:013112, 2011.
    [124] S.-J. Liang, S. Sun, and L. K. Ang. Over-barrier side-band elec-
    tron emission from graphene with a time-oscillating potential. IEEE
    Trans. Electron Devices, 61:294, 2013.
    [125] S.-J. Liang and L. K. Ang. Chiral tunneling-assisted over-barrier
    electron emission from graphene. IEEE Trans. Electron Devices,
    61:1764, 2014.
    [126] R. T. Longo. Long life, high current density cathodes. in Electron
    Devices Meeting, 1978 International, 1978, 24:152, 1978.
    [127] R. T. Longo. A study of thermionic emitters in the regime of prac-
    tical operation. in Electron Devices Meeting, 1980 International,
    1980, 26:467, 1978.
    [128] A. Rokhlenko. Linear analysis of time dependent properties of child-
    langmuir
    ow. Phys. Plasmas 1994-Present, 20:012112, 2013.
    [129] A. Rokhlenko. Child-langmuir
    ow with periodically varying anode
    voltage. Phys. Plasmas 1994-Present, 22:022126, 2015.
    [130] K. B. Blodgett I. Langmuir. Currents limited by space charge be-
    tween coaxial cylinders. Phys. Rev., 22:347, 1923.
    [131] K. B. Blodgett I. Langmuir. Currents limited by space charge be-
    tween concentric spheres. Phys. Rev., 24:49, 1924.

    QR CODE
    :::