| 研究生: |
胡敦棋 Dun-Qi Hu |
|---|---|
| 論文名稱: |
基於雙模壓縮編碼形式之量子糾錯方案 Quantum Error Correction Based on Two-Mode Squeezing Code |
| 指導教授: |
林嘉慶
蔡秉儒 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 量子糾錯 、量子訊息處理 |
| 外文關鍵詞: | two-mode squeezing code, GKP state, squeezed state |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著量子科技的高速發展,已經有許多量子通訊的實際應用出現在生活中,各國對於量子通訊的意識也越發興盛。然而,量子通訊仍然面臨許多挑戰,其中之一就是高斯誤差,因此量子糾錯尤為重要,目前提出的量子糾錯方案大多是針對離散變量系統,對於連續變量系統的量子糾錯方案仍有待發展。而本篇論文討論的範疇就是連續變量系統中的量子糾錯,根據學者所提出的GKP two-mode squeezing code,能有效的針對高斯誤差進行量子糾錯,但目前的技術尚無法製備標準的GKP state,因此我們將其進行改良,提出較易實現的squeezed state two-mode squeezing code,透過數值分析以及實驗模擬來證實squeezed state two-mode squeezing code的可行性,在結合實用性的同時以實現連續變量系統中的量子糾錯。
In recent years, with the rapid development of quantum technology, there have been numerous practical applications of quantum communication in daily life. Countries around the world are increasingly aware of the importance of quantum communication. However, quantum communication still faces many challenges, one of which is Gaussian errors. Therefore, quantum error correction plays a crucial role. Most of the proposed quantum error correction schemes are designed for discrete variable systems, and there is still room for development in quantum error correction schemes for continuous variable systems. This paper focuses on quantum error correction in continuous variable systems. Based on the GKP two-mode squeezing code proposed by scholars, effective quantum error correction for Gaussian errors can be achieved. However, current technology has not been able to produce standard GKP states. Therefore, we propose an improved and more feasible approach called the squeezed state two-mode squeezing code. We demonstrate the feasibility of the squeezed state two-mode squeezing code through numerical analysis and experimental simulations. This approach combines practicality with the goal of achieving quantum error correction in continuous variable systems.
參考文獻
[1] Kyungjoo Noh, S. M. Girvin, and Liang Jiang, “Encoding an Oscillator into Many Oscillators,” Phys. Rev. Lett. 125, 080503 (2020).
[2] Kyungjoo Noh, S. M. Girvin, and Liang Jiang, “Encoding an oscillator into many oscillators: Supplemental material,”.
[3] Bo-Han Wu, Zheshen Zhang, and Quntao Zhuang, “Continuous-variable quantum repeaters based on bosonic error-correction and teleportation: architecture and applications,” Quantum Sci. Technol. 7, 025018 (2022).
[4] Christian Weedbrook, Stefano Pirandola, Rau´l Garcı´a-Patro´n, Nicolas J. Cerf, Timothy C. Ralph, Jeffrey H. Shapiro, and Seth Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[5] N. Fabre, G. Maltese, F. Appas, S. Felicetti, A. Ketterer, A. Keller, T. Coudreau, F. Baboux, M. I. Amanti, S. Ducci, and P. Milman, “Generation of a time-frequency grid state with integrated biphoton frequency combs,” Phys. Rev. A 102, 012607 (2020).
[6] Ingrid Strandberg, Yong Lu, Fernando Quijandría, and Göran Johansson, “Numerical study of Wigner negativity in one-dimensional steady-state resonance fluorescence,” Phys. Rev. A 100, 063808 (2019).
[7] Michael A. Taylor, Warwick P. Bowena, “Quantum metrology and its application in biology,” Phys. Rep., vol. 615, pp. 14-26, Feb. 2016.
[8] Jacob Hastrup and Ulrik L. Andersen, “Generation of optical Gottesman-Kitaev-Preskill states with cavity QED,” Phys. Rev. Lett. 128, 170503 (2022).
[9] Yunong Shi, Christopher Chamberland, Andrew W. Cross, “Fault-tolerant preparation of approximate GKP states,” New J. Phys. 21, 093007 (2019).
[10] Kyungjoo Noh, Christopher Chamberland, and Fernando G.S.L. Brandão, “Low-Overhead Fault-Tolerant Quantum Error Correction with the Surface-GKP Code,” PRX Quantum 3, 010315 (2022).
[11] Ilan Tzitrin, J. Eli Bourassa, Nicolas C. Menicucci, and Krishna Kumar Sabapathy, “Progress towards practical qubit computation using approximate Gottesman-Kitaev-Preskill codes,” Phys. Rev. A 101, 032315 (2020).
[12] Andrei B. Klimov, Carlos Muñoz, and Luis L. Sánchez-Soto, “Discrete coherent and squeezed states of many-qudit systems,” Phys. Rev. A 80, 043836 (2009).
[13] Maximilian Reichert, Louis W. Tessler, Marcel Bergmann, Peter van Loock, and Tim Byrnes, “Nonlinear quantum error correction,” Phys. Rev. A 105, 062438 (2022).
[14] Julien Niset, Jaromír Fiurášek, and Nicolas J. Cerf, “No-Go Theorem for Gaussian Quantum Error Correction,” Phys. Rev. Lett. 102, 120501 (2009).
[15] James P. Clemens, Shabnam Siddiqui, and Julio Gea-Banacloche, “Quantum error correction against correlated noise,” Phys. Rev. A 69, 062313 (2004).
[16] Blayney W. Walshe, Ben Q. Baragiola, Rafael N. Alexander, and Nicolas C. Menicucci, “Continuous-variable gate teleportation and bosonic-code error correction,” Phys. Rev. A 102, 062411 (2020).
[17] E.M.E. Zayed, A.S. Daoud, M.A. AL-Laithy, E.N. Naseem, “The Wigner distribution function for squeezed vacuum superposed state,” Chaos, Solitons & Fractals, vol. 24, Issue 4, pp. 967-975, May 2005.
[18] Pieter Kok and Brendon W. Lovett, Introduction to Optical Quantum Information Processing, Cambridge University Press, 2010, pp. 255-267.
[19] Ilan Tzitrin, J. Eli Bourassa, and Krishna Kumar Sabapathy, “Riding bosonic qubits towards fault-tolerant quantum computation,” Published in XanaduAI, 9 min read, Nov 19, 2019.