| 研究生: |
羅仁瓏 Jen-Long Lo |
|---|---|
| 論文名稱: |
以氮化物表面電漿結構研製的生醫感測微晶片 Microarray biochips fabricated with Nitride-based Surface Plasmon Resonance |
| 指導教授: |
賴昆佑
Kun-Yu Lai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 氮化物 、表面電漿 |
| 外文關鍵詞: | Nitride, Surface Plasmon |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面電漿式的蛋白質微晶片陣列具有免螢光、免清洗、多工、即時等優點,過去三十年來,表面電漿感測元件已從實驗室走向商品,成為生物醫學檢測的一項利器。目前的表面電漿生醫感測系統多採用克式結構(Kretschmann configuration),以稜鏡產生高動量入射波,搭配鍍有金屬的載玻片及複雜的光學追蹤系統,才能偵測到微弱的光訊號變化。然而稜鏡不只體積大、價格貴,與載玻片之間也有光耦合不易的問題。
在本研究中,我們以高折射率的氮化鎵磊晶層取代稜鏡,並在表面的金屬層產生表面電漿效應,不但能簡化感測元件的設計,還能增加表面電漿的發光強度。此外,我們採用的氮化銦鎵量子井,可做為表面電漿效應的增益層(gain medium),具備訊號放大效果,能偵測到更低濃度之檢體,因而提升系統敏感度與解析能力。並可藉由調整氮化銦鎵量子井的磊晶結構,優化量子井與表面電漿偏振子(surface plasmon polaritons)之間的耦合效率,以產生更強之表面電漿共振。
藉由檢測酒精、抗原Protein G與人體抗體IgG三種溶液以驗證系統可行性。量測檢果顯示:酒精溶液其敏感度為8×〖10〗^(-5) (RIU^(-1)),人體抗體IgG溶液檢測極限(Limit of detection)可達1.89nM。
Comparing with conventional biosensing techniques, surface plasmon resonance (SPR) biosensors allow label-free, wash-free, multi-analyte and real-time measurement, which can significantly expedite the assay process. However, most of current SPRi devices attain the SPR effect through the Kretschmann configuration, i.e. a complex involving a prism coupler, a glass slide, the refractive-index-matching oil, and intricate optical tracking components. In specific, a prism coupled with an Au-coated glass is usually required to attain the SPR effect through total internal reflection. The prism-glass complex is expensive, and often encounters the difficulty in optical coupling between the two components.
In this project, we built a nitride-based SPR proteome microarrays. The SPR structure comprises a single GaN/InGaN/GaN quantum well coated with a thin Ag layer. Biomolecular interactions are detected by the SPR effect induced at the GaN/Ag interface, where a minute change in refractive index can lead to measurable variation of the emission intensity from the quantum well. The InGaN quantum wells are of many inherent properties that are matchlessly suitable for SPRi biosensing, including the waveguide-like behaviour, the chemical and physical inertness, the TM-(or p-) polarized wave, and most importantly: the gain effect. These favorable properties not only simplify the sensing architecture by eliminating all the aforementioned apparatuses (prism, glass slide, index-matching oil, optical tracking components, etc.), but also pave a new route to push sensing performances via the prolonged propagation lengths of SP polaritons. More importantly, we show that the multi-mode characteristic of the quantum wells lead to an exponentially improved sensitivity/resolution upon the increase of surface refractive index, unlike the linear response exhibited by current SPR biosensors. Using human IgG, we demonstrate the detection limit of 1.89 nM with the nitride-based SPR biosensor.
[1] Lysate Microarrays, Available at:http://macbeath.hms.harvard.edu/research/lysate_ma.html
[2] T. O. Joos., et al., “Miniaturised multiplexed immunoassays”, Current Opinion in Chemical Biology, 6, 76-80 (2002)
[3] C.T. Campbell, “Surface Plasmon Resonance (SPR) Biosensor Development”, Citeseer, (2003)
[4] 陳俊帆,“δ-doped InxGa1-xAs/InAlAs 量子井的電子特性研究”,國立中山大學物理研究所,碩士論文 (2005)
[5] U. Fano. et al., ‘’The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces’’, Journal of the Optical Society of America, 31(3), 213 (1941)
[6] F.Cheng. et al., “Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms’’, Nature Scientific Reports, 5(1) 3-6 (2015)
[7] T. Takayama, et al., “Theoretical predictions of unstable two-phase regions in wurtzite group-III-nitride-based ternary and quaternary material systems using modified valence force field model” Apply. Physics, 90, 2358–2369 (2001).
[8] H.M. Otte, et al., “Crystallographic Formulae for Hexagonal Lattices”, Physica status solidi (b)., 9(2), 441–450(1965)
[9] 纖維鋅礦結構, Available at: http://www.baike.com/wiki/
[10] H. Masui, “Nonpolar and Semipolar III-Nitride Light-Emitting Diodes: Achievements and Challenges’’, IEEE Trans. Elec. Dev. 57, 88 (2010)
[11] E. Kretschmann, ‘‘Decay of nonradiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results’’, Optics Communication, 6, 185–187 (1972)
[12] K. Okamoto. et al., “Surface-plasmon-enhanced light emitters based on InGaN quantum wells”, Nature Materials, 3(9), 601-605 (2004)
[3] B.Liedberg. et al., “Surface plasmon resonance for gas detection and biosensing”, Sensor and Actuators, 4, 299-304 (1982)
[14] J.W. Chung, et al., “Sequential analysis of multiple analytes using a surface plasmon resonance (SPR) biosensor”, Journal of Immunological Methods, 311(1), 178-188 (2006)
[15] 易政男,“藉由奈米電漿子偵測信號強化之表面電漿共振與表面強化拉曼散射生物感測器”,國立中央大學光電科學研究所,博士論文(2005)“
[16] S. Maier. Et al., “Local detection of electromagnetic energy transport below the diffraction limit in meal nanoparticle plasmin waveguide”, Nature Materials, 2(4), 229-232 (2003)
[17] 陳雅文,“表面電漿子增強螢光效應之研究”,國立成功大學工程科學系,碩士論文 (2009)
[18]陳品承,“表面電漿增強奈米矽發光元件之發光效率研究”,國立承光大學微電子工程研究所,碩士論文 (2009)
[19] 蔡定平,“金屬表面電漿簡介”,物理雙月刊 (2006)
[20] A. Otto., “Excitation by light ofω+ andω− surface plasma waves in thin metal layers”, Zeitschrift für Physik A Hadrons and nuclei, 219(3), 227-233 (1969)
[21] S. Dang et al., Optics 125, 3623, (2014)
[22] 有機金屬化學氣相沉積法,Available at:https://zh.wikipedia.org/wiki/ (2015)
[23] Relationship between Salt Solution and Sugar Concentration , Available at:
http://www.topac.com/salinity_brix.html
[24] Joseph S. et al., “The Refractive Indices of Alcohol, Water, and Mixtures at High Pressures”, Journal of the optical society of America, 37(11), 932-938 (1947)
[25] G.G. Nenninger., et al., “Long-range surface plasmons for high-resolution surface plasmon resonance sensors”, Sensors and Actuators B: Chemical, 74(1), 145-151 (2001)
[26] R. Slavík., et al., “Ultrahigh resolution long range surface plasmon-based sensor”, Sensors and Actuators B: Chemical, 123(1), 10-12 (2007)
[27] M. Piliarik ., et al., “High-throughput SPR sensor for food safety”, Biosensors and Bioelectronics, 24(5), 1399-1404 (2009)
[28] R. Slavı́k., et al., “Novel spectral fiber optic sensor based on surface plasmon resonance”, Sensors and Actuators B: Chemical, 74(1), 106-111 (2001)
[29]I. Dostálek., et al., “Surface plasmon resonance biosensor based on integrated optical waveguide”, Sensors and Actuators B: Chemical, 76(1), 8-12 (2001)