跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林昱程
Yue-Cheng Lin
論文名稱: 模擬利用全球定位系統與低軌道衛星進行電離層斷層掃描
Simulation of ionospheric tomography by using global positioning system and low earth orbit satellites
指導教授: 劉正彥
Jann-Yenq Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
畢業學年度: 94
語文別: 中文
論文頁數: 59
中文關鍵詞: 電離層斷層掃描全球定位系統低地球軌道衛星
外文關鍵詞: Computerized ionospheric tomography, global positioning system, low-earth orbit satellite
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 廣布全球的測站以及良好的資料品質,使得全球定位系統(GPS)成為測量電離層全天電子含量的新寵,而低地球軌道衛星(LEO)如CHAMP,SAC-C,以及福爾摩沙衛星三號等以無線電掩星觀測提供水平方向射線,是為最新探測電子濃度鉛直分布之利器。本文模擬結合GPS及LEO觀測技術,並改良一般常用於電離層斷層掃描之MART演算法,建立二維及三維高解析度電離層暫態斷層掃描的新方法,以探察大範圍電離層結構變化。模擬結果顯示此一新方法能有效降低MART演算法對於初始猜值好壞之依賴,因此可在有限資訊之下得到更好的結果,而加入LEO水平方向射線或地面電離層探測儀之觀測確實有助於提升反演結果之正確性。


    The global positioning system (GPS) has been employed to calculate the total electron content (TEC) with advantages of its worldwide coverage and high time resolution. Recent developments on low earth orbit (LEO) satellites with the radio occultation (RO) technology, such as CHAMP , SAC-C, or FORMOSAT-3 COSMIC, provide the horizontal (tangent ray) observations to derive the vertical profiles. In this study, the two observations are combined to reach a new approach, the Multiplicative Algebra Reconstruction Technique (MART) is modified to reconstruct and obtain a high spacial resolution three-dimensional ionospheric electron density structure. The simulations indicate that the new approach significantly reduces the dependence of MART on initial values and achieves better reconstructions. Results show that observations from LEO satellites and/or priori information from co-located ionosondes can greatly improve the performance of inversion distributions.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 V 第ㄧ章 緒論 1 1.1 電腦斷層掃描 2 1.2 電離層斷層掃描 3 1.3 全球定位系統 4 1.4 研究目標 5 第二章 電離層 8 2.1 電離層簡介 8 2.2 赤道異常 10 第三章 模擬反演 12 3.1 問題描述 12 3.2 模擬測試 13 3.2.1 二維模擬反演 16 3.2.2 三維模擬反演 18 第四章 討論與結論 21 參考文獻 23

    Afraimovich, E. L., O. M. Pirog, and A. I. Terekhov (1992) Diagnostics of large-scale structures of the hight-latitude ionosphere based on tomographic treatment of navigation-satellite signals and of data from ionosphere stations, J. Atmos. Terr. Phys., vol. 54, pp. 1265-1273.
    Appleton, E. V., Two anomalies in the ionosphere, Nature, 157, 691, 1946.
    Austen, J.R., Franke, S.J., and C.H. Liu (1988), Ionospheric imaging using computerized tomography, Radio Sci. 23, 299–307.
    Bailey, G. J., and N. Balan, A low- latitude ionosphere-plasmasphere model, in STEP Hand Book, edited by R. W. Schunk, Utah State University, in press, 1995
    Bracewell, R, N., (1956) “Strip integration in radio astronomy,” Aust. J. Phys., val. 9, pp. 198-217.
    Davies, K., Ionospheric Radio, Short Run Press Ltd., Exeter, England, 1990.
    Fremouw, E. J., J. A. Secan, and B. M. Howe, (1992) Application of stochastic inverse theory to ionospheric tomography, Radio Sci., vol. 27(5), pp. 721-732.
    Frieden B. R., (1972) Restoring with maximum likeliwood and maximum entropy, J. Opt. Soc. Amer., vol 62 pp. 511-518.
    Jakowski N, Reinhart L, and Mathew A, (2004) Radio occultation techniques for probing the ionosphere, Ann Geophys Vol 47, 1049-1066.
    Hajj, G. A., and L. J. Romans (1998), Ionospheric electron density profiles obtained with GPS: Results from the GPS/MET experiment, Radio Sci., 33, 175–190.
    Hernandez-Pajares, M., J. M. Juan, and J. Sanz (1998), Global observation of the ionospheric electronic response to solar events using ground and LEO GPS data, J. Geophys. Res., 103, 20,789–20,796.
    Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins, GPS Theory and Practice, 2nd version, Springer-Verlag, Wien, New York, 1992.
    Huang, C. R., C. H. Liu., H. C. Yeh., W. H. Tsai., C. J. Wang., K. C. Yeh., K. H. Lin, and H. L. Tsai (1996), "IRI model application in low latitude ionospheric tomography,” Adv. Space Res. Vol. 18(6), pp. 237-240.
    Kak A. C. and M. Slaney ‘Principles of Computerized Tomographic Imaging,’ IEEE press, New York, 1993.
    Liu, J. Y., H. F. Tsai and T. K. Jung (1996), Total Electron Content Obtained by Using the Global Positioning System, Terr. Atmo. Oce. Sci., 7, 107-117
    Mitchell C. N., L. Alfonsi, G. De Franceschi, M. Lester, V. Romano, and A. W. Wernik, (2005) GPS TEC and scintillation measurements from the polar ionosphere during the October 2003 storm, Geophys. Res. Lett., vol. 32 L12S03.
    Mitchell C. N., Spencer PSJ (2003) A three-dimensional time-dependent algorithm for ionospheric imaging using GPS. Ann Geophys 46(4):678–696.
    Martyn, D. F., "Electric currents in the ionosphere. III. Ionizationdrift due to winds and electric fields," Phil. Trans. Roy. Soc.London, A246, P. 306, 1953.
    Nygr?n, T., Markkanen, M., Lehtinen,M., Tereshchenko, E.D.,Khudukon, B.Z., Evstafiev, O.V., Pollari,P.: (1996) Comparison of F-region electron density observations by satellite radio tomography and incoherent scatter methods, Ann. Geophysicae 14, 1422–1428.
    Pryse, S.E. (2003), Radio tomography: a new experimental technique, Surv. Geophys., 24, 1-38.
    Radon, J. “Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten (On the determination of function from their integrals along certain manifolds),” Berichte Sachsische Akademine der Wissenschaften. Leipzing, Math --- Phys. Kl., 69, pp. 262-267. 1917.
    Ratcliffe, J. A., An Introduction to the Ionosphere and Magnetosphere, 256pp., Cambridge, UK, 1972.
    Raymund, T. D., Pryse, S.E., Kersley, L., and Heaton, J.A.T. (1993), Tomographic reconstruction of ionospheric electron density with European incoherent scatter radar verification, Radio Sci. 28, 811–817.
    Raymund, T. D., S. J. Franke and K. C. Yeh (1994), Ionospheric tomography: its limitations and reconstruction methods, J. Atmos. Phys. vol. 56, pp. 637-657.
    Rius A, Ruffini G, Cucurull L (1997) Improving the vertical resolution of ionospheric tomography with GPS occultations. Geophys Res Lett 24(18):2291–2294.
    Sardon, E., A. Rius, and N. Zarraoa, (1994): Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations. Radio Sci, 29, 577-586.
    Tsai, L.-C., W. H. Tsai, W. S. Schreiner, F. T. Berkey, and J. Y. Liu (2001), Comparisons of GPS/MET retrieved ionospheric electron density and ground based ionosonde data, Earth Planets Space, 53,193– 205.
    Walker, I.K., Heaton, J.A.T., Kersley, L., Mitchell, C.N., Pryse, S.E., and Williams, M.J.: (1996) EISCAT verification in the development of ionospheric tomography, Ann. Geophysicae 14, 1413–1421.
    Wilson, D. B., A. J. Mannucci, C. D. Edwards, and T. Roth, (1992): Global ionospheric maps using a global netqwork of GPS receivers, the Int. Beacon Satellite Symposium, MIT, Cambridge, MA, July 6-12
    Yeh H. C. S. J. Franke, K. C. Yeh, C. H. Liu, T. D. Raymond, H. H. Chen, A.V. Izotov, J. Y. Liu, J. Wu, K. H. Lin, and S. W. Chen, (1994) Low-latitude Ionospheric Tomography Network along Taiwan meridian, Proceeding of COSPAR Colloquium on Low Latitude Ionospheric Physics, edit by F. S. Kuo, vol 7, pp 295-303.
    Yeh, K. C., and C. H. Liu, Theory of Ionospheric Waves, Academic Press, New York, 1972.
    Yeh K. C., and T. D. Raymund (1991) Limitations of ionospheric imaging by tomography, Radio Sci., vol. 26(6), pp. 1361-1380.
    鄒玉華, (2004): GPS地面臺網和掩星觀測結合的時變三維電離層層析, 博士論文, 中國武漢大學。

    QR CODE
    :::