跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳韋傑
Wei-Chieh Chen
論文名稱: 應用Gaver-Stehfest公式計算振動問題
指導教授: 李顯智
Hin-Chi Lei
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 119
中文關鍵詞: 時間軸平移拉氏反轉換Gaver-Stehfest
外文關鍵詞: Local extension, Inverse Laplace Transform, Gaver-Stehfest
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 學術上求拉氏反轉換(Inverse Laplace Transform)的數值方法很多,Gaver-Stehfest方法是較常用於力學問題分析的一種方法,原因在於此方法在執行上較為方便,而在應用拉氏方法及Gaver-Stehfest公式計算振動問題的常微分方程時,往往只在一段時間區間內得到滿意的結果,在長時間區間上則誤差很大。為了克服此問題可用時間軸平移的方式來分段計算,就可得到不錯的結果,本文則是把此改良的方法,具體地應用於結構動力學的問題上,考察其表現。


    In academic world, there are many numerical methods to compute the Inverse Laplace Transform. Gaver-Stehfest formula is the most popular method to apply in dynamics theory analysis since it can perform conveniently. It usually obtains satisfied result in certain time while applying Laplace Transform and Gaver-Stehfest formula to calculate ODES of vibrations. While simulating the ODES, we can use some theories about Laplace transform and extend the effective region of the Gaver-Stehfest formula by some technique of local extension to reduce the error. This research is mainly focusing on applying the modified methods on Dynamics Of Structures to evaluate the result.

    摘 要 i ABSTRACT ii 致 謝 iii 目 錄 iv 圖目錄 v 第一章 導論 1 第二章 LAPLACE 轉換及 GAVER-STEHFEST 公式的介紹 3 第三章 處理 AUTONOMOUS 微分方程及計算結構的自由振動行為 6 3-1 研究方式 6 3-2 分析結果 6 3-2-1 第一個例子的分析結果 6 3-2-2 第二個例子的分析結果 43 3-2-3 第三個例子的分析結果 61 第四章 處理 NON-AUTONOMOUS 微分方程及計算結構的強迫振動行為 78 4-1 研究方式 78 4-2 分析結果 78 4-2-1 第一種例子分析的結果 78 4-2-2 第二個例子的分析結果 97 第五章 結論 116 參考文獻 117

    [1] Mario Paz and William E. Leigh, “Structural Dynamics:theory and computation.” New York : Van Nostrand Reinhold, c1980
    [2] Madhujit Mukhopadhyay , “Vibrations, dynamics and Structural systems.” Rotterdam: Brookfield, VT: A. A. Balkema, 2000
    [3] Anil K. Chopra, “Dynamics of Structures:Theory and applications to earthquake engineering.” Englewood Cliffs, N.J : Prentice Hall, c1995
    [4] Erwin Kreyszig, “Advanced engineering mathematics.” Hoboken, NJ : John Wiley, c2006
    [5] Dennis G. Zill,Michael R.Cullen, “Advanced engineering mathematics.” Sudbury, Mass : Jones and Bartlett, c2000
    [6] Peter V. O’Neil, “Advanced engineering mathematics.” Boston : PWS-Kent Pub. Co., c1995
    [7] H. Rutishauser, “Lectures on Numerical Mathmatics.” Translated by W. Gautschi, Birkhauser, Boston, 1990.
    [8] M. J. Maron and R. J. Lopez, “Numerical Analysis: A Practical Approach.” Wadsworth Publishing Company, Belmont, California, 1990.
    [9] J. Penny and G. Lindfield, “Numerical Methods Using Matlab.” Ellis Horwood, New York, 1995
    [10] R. A. Schapery, ” approximate methods of transform inversion for viscoelast -ic stress analysis” Proc.4th.U.S. Nat.Congress.
    [11] E. Detournay and A. H-D. Cheng, “poroelastic response of borehole in a non-Hydrostatic stress field,” Int. J. Rock. Meth. Min. Sci&Geomech. Abstr, 25 (1988) 171-182.
    [12] H.S. Chohan, R.S. Sandhu and W.E. Wolfe, ”A semi-discrete procedure for dynamic response analysis of saturated soils.” Int. J. Numer. Analyt. Meth. Geomech., 15 (1991) 471-496.
    [13] J.R. Booker. And J.C. Small, "A method of computing the consolidation behavior of layered soils using direct numerical inversion of laplace transform,” Int. J. Numer. Analyt. Meth. Geomech., 11 (1987) 363-380
    [14] S.L. Chen, L.M. Zhang and L.Z Chen,“ Consolidation of a finite transverse -ly isdropic soil layer on a rough impervious base.” Journal of Engrg. Mech. ASCE, 131 (2005) 1279-1290.
    [15] R.K.N.O. Rajapakse and T. Senjuntichai,” An direct boundary integral equation method for poroelasticity."Int. J. Numer. Analyt. Meth. Geomech., 19 (1995) 587-614
    [16] D. P. Gaver, Jr., “Observing stochastic processes, and approximate transform inversion.” Operational Res., 14 (1966) 444-459
    [17] H. Stehfest, Comm. Acm., 13 (1970) 47..
    [18] E. L. Post, “Generalized differentiation.” Trans. Amer. Meth. Soc., 32 (1960) 723-781
    [19] D. W. Widder, “The inversion of the Laplace integral and the related moment problem.” Amer. Meth. Soc. Trans 36 (1934) 107-200
    [20] D. W. Widder, The Laplace Transform. Princeton University Press, Princetion, NJ. (1946)
    [21] S. Sykore, V. Bortollotti and P. Fautazzini, “PERFIDI: parametrically enabled relaxation filters winth double and multiple inversion.” Magnetic Resonance Imaging 25 (2007) 529-532
    [22] C. Montella, “ LSV modeling of electrochemical systems through numerical inversion of inversion of Laplace transform. I-The GS-LSV algorithm.” J. Electroamalytical chemistry, 614 (2008) 121-130.
    [23] B.davies and B Martin, “Numerical inversion of the Laplace transform: a survey and comparision of methods.” J. Computational Plrys., 33 (1979) 1-32
    [24] 陳正豪,「對Gaver-Stehfest公式之研究與探討」,碩士論文,國立中央大學

    QR CODE
    :::