| 研究生: |
江承恩 Cheng-en Jiang |
|---|---|
| 論文名稱: |
以超短脈衝雷射沉積技術製作鍺/矽薄膜之研究 growth of Ge/Si thin film with ultrashort pulse laser deposition and its study |
| 指導教授: |
陳賜原
Szu-yuan Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 超短脈衝雷射沉積 、鍺/矽薄膜 |
| 外文關鍵詞: | ultrashort pulse laser deposition, Ge/Si thin film |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
探討以超短脈衝雷射沉積技術製作鍺/矽薄膜之表面型態學。主
要以原子力顯微鏡(AFM)作為主要診斷工具,包含了解鍺薄膜成長的
時間演化過程、膜厚與基板溫度對磊晶成長的影響、電漿噴流密度之
角度分布定性分析。
接著,並使用共焦拉曼螢光顯微鏡量測鍺薄膜的拉曼光譜,由拉
曼偏移訊號半高寬判斷鍺薄膜的結晶性,並與原子力顯微鏡觀察到的
表面結構比較。
最後,比較原子力顯微鏡與膜厚量測器(alpha stepper)所量測
的薄膜表面高低起伏程度是否結果一致。並根據alpha stepper 量測
之鍺薄膜平均膜厚值、雷射發數,進一步得到每發雷射所成長的平均
膜厚。
未來工作將參考每發雷射所成長的平均膜厚值,以超短脈衝雷
射沉積技術製作鍺/矽量子點。同時在進行量子點製程時,以中紅外
光控制量子點的大小。以期將尺寸大小相同的量子點應用於量子計算
實驗中。
We show that the islands formed in Stranski-Krastanow (SKI growth of Ge on Si(100) are initially
dislocation-free. Island formation in true SK growth should be driven by strain relaxation in large,
dislocated islands. Coherent SK growth is explained in terms of elastic deformation around the islands,
which partially accommodates mismatch. The limiting critical thickness, h,, of coherent SK islands is
shown to be higher than that for 2D growth. We demonstrate growth of dislocation-free Ge islands on
Si to a thickness of -- 500 A, 50x higher than h, for 2D GeISi epitaxy.
1J. Konle, H. Presting, H. Kibbel, K. Thonke, and R. Sauer, Solid-State
Electron. 45, 1921 2001 .
2D. L. Harame, S. J. Koester, G. Freeman, P. Cottrel, K. Rim, G. Dehlinger,
D. Ahlgren, J. S. Dunn, D. Greenberg, A. Joseph, F. Anderson, J.-S. Rieh,
S. A. S. T. Onge, D. Coolbaugh, V. Ramachandran, J. D. Cressler, and S.
Subbanna, Appl. Surf. Sci. 224, 9 2004 .
3D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 1990 .
4G. Medeiros-Ribeiro, A. M. Bratkovski, T. I. Kamins, D. A. A. Ohlberg,
and R. S. Williams, Science 279, 353 1998 .
5F. M. Ross, J. Tersoff, and R. M. Tromp, Phys. Rev. Lett. 80, 984 1998 .
6J. Stangl, V. Holý, and G. Bauer, Rev. Mod. Phys. 76, 725 2004 .
7F. Ratto, G. Costantini, A. Rastelli, O. G. Schmidt, K. Kern, and F. Rosei,
J. Exp. Nanosci. 1, 279 2006 .
8J. M. Baribeau, X. Wu, N. L. Rowell, and D. J. Lockwood, J. Phys.:
Condens. Matter 18, R139 2006 .
9J. R. Heath, R. S. Williams, J. J. Shiang, S. J. Wind, J. Chu, C. D’Emic, W.
Chen, C. L. Stanis, and J. J. Bucchignano, J. Phys. Chem. 100, 3144
1996 .
10T. I. Kamins and R. S. Williams, Appl. Phys. Lett. 71, 1201 1997 .
11E. S. Kim, N. Usami, and Y. Shiraki, Appl. Phys. Lett. 72, 1617 1998 .
12G. Capellini, M. de Seta, C. Spinella, and F. Evangelisti, Appl. Phys. Lett.
82, 1772 2003 .
13A. Karmous, A. Cuenat, A. Ronda, I. Berbezier, S. Atha, and R. Hull,
Appl. Phys. Lett. 85, 6401 2004 .
14A. Bernardi, M. I. Alonso, A. R. Goñi, J. O. Ossó, and M. Garriga, Appl.
Phys. Lett. 89, 101921 2006 .
15T. I. Kamins, D. A. A. Ohlberg, R. S. Williams, W. Zhang, and S. Y. Chou,
Appl. Phys. Lett. 74, 1773 1999 .
16L. Vescan, Mater. Sci. Eng., A 302, 6 2001 .
17O. G. Schmidt, N. Y. Jin-Phillipp, C. Lange, U. Denker, K. Eberl, R.
Schreiner, H. Grabeldinger, and H. Schweizer, Appl. Phys. Lett. 77, 4139
2000 .
18G. Jin, J. L. Liu, and K. L. Wang, Appl. Phys. Lett. 76, 3591 2000 .
19Z. Zhong, A. Halilovic, M. Muhlberger, F. Schäffler, and G. Bauer, J.
Appl. Phys. 93, 6258 2003 .
20B. Shin, J. P. Leonard, J. W. McCamy, and M. J. Aziz, Appl. Phys. Lett.
87, 181916 2005 .
21M. S. Hegazy and H. E. Elsayed-Ali, J. Appl. Phys. 99, 054308 2006 .
22X. Ma, Z. Yan, B. Yuan, and B. Li, Nanotechnology 16, 832 2005 .
23D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films
Wiley, New York, 1994 .
24C. V. Cojocaru, C. Harnagea, A. Pignolet, and F. Rosei, IEEE Trans.
Nanotechnol. 5, 470 2006 .
25The stencil chip has 14 freestanding membranes, 2 mm in length and
100 m in width; nominal diameter of the circular apertures is 350 nm
and the pitch 700 nm; stencils fabricated at Aquamarijn Filtration, The
Netherlands.
26Samples were prepared with various Ge thicknesses coverages . In PLD,
the deposited film thickness is controlled by varying the number of laser
pulses for a certain target-substrate distance provided that desorption from
the substrate is negligible.
27A. Bernardi, J. O. Ossó, M. I. Alonso, A. R. Goñi, and M. Garriga,
Nanotechnology 17, 2602 2006 .
28Typically 0.4–0.6-nm-thick for Ge on Si 001 ; Y.-W. Mo, D. E. Savage,
B. S. Swartzentruber, and M. G. Lagally, Phys. Rev. Lett. 65, 1020
1990 .
29L. Vescan, T. Stoica, B. Holländer, A. Nassiopoulou, A. Olzierski, I. Raptis,
and E. Sutter, Appl. Phys. Lett. 82, 3517 2003 .
30A. Rastelli, M. Stoffel, J. Tersoff, G. S. Kar, and O. G. Schmidt, Phys.
Rev. Lett. 95, 026103 2005 .
31For any given set of deposition parameters, the sizes of the dots are fairly
narrowly distributed. Their density can be further tuned by using stencils
with smaller or larger apertures and varying PLD parameters.