| 研究生: |
郭幸宜 KUO HSING-YI |
|---|---|
| 論文名稱: |
污泥脫水濾液無機物成分之結垢潛勢研究 An investigation on scaling potential of inorganic components in sludge dewatering filtrate |
| 指導教授: | 莊順興 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 結垢 、pH 、脫水濾液 、反應曲面法 、最佳化 、薄膜過濾 |
| 外文關鍵詞: | Scaling, pH, sludge dewatering filtrate, Reaction Surface Method, Optimization, Membrane Filtration |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於近年磷礦開採量的上升,磷回收之議題逐漸受到重視。在污水廠中厭氧消化程序具有高磷與高氮之成分,但含有大量懸浮固體與有機物影響,容易使回收成效不佳。因此,藉由前處理之方式優化磷回收之品質,是未來實廠應用所需之程序,但透過薄膜過濾進行前處理時,容易遇到積垢與結垢之問題,導致過濾效率不佳,進而使成本上升及成效的降低。
因此,本研究使用合成脫水濾液進行無機物結垢潛力與磷保留率實驗,透過批次實驗與反應曲面法探討實廠濃度範圍之最佳條件,並利用長期薄膜過濾實驗以比較及驗證最佳條件與最差條件之結垢特性差異。
透過實廠廢水之水質分析中顯示,脫水濾液之pH為7.9±0.1、正磷酸鹽濃度為128.1±8.2 mg/L、氨氮濃度為771.3±68.1 mg/L、總固體濃度為1,163±80.1 mg/L及TOC為56.2±10.3 mg/L。厭氧消化上澄液之pH為7.6±0.6、正磷酸鹽濃度為170.7±42.0 mg/L、氨氮濃度為871.2±102.2 mg/L、總固體濃度為33,193±166.2 mg/L及COD為698.9±21.6 mg/L,二者相比,由於厭氧消化上澄液之懸浮固體與有機物較高之特性,較不易進行薄膜前處理與磷回收,而脫水濾液含有較少之懸浮固體且仍具有較高之磷濃度。因此,整體而言,脫水濾液具有較佳之回收潛力。
在批次實驗中使用不同pH值與鈣離子濃度進行MFI0.2與磷保留率之實驗,根據結果顯示當pH越高會造成越高MFI0.2與越低磷保留率。在pH 6-7中具有較低MFI0.2與較高磷保留率,主要因為產生沉澱反應之pH區間範圍約在pH 7.5-12,在低於該範圍時,不易有顆粒產生。在pH 7.5-9時,隨著pH的上升,溶液中離子積高於各類磷酸鹽化合物之KSP,如:磷酸銨鎂、羥基磷灰石等,並產生顆粒物,進而導致結垢產生。同時發現隨著pH與鈣離子濃度由低到高,MFI0.2、粒徑與可能產生之沉澱物種類皆逐漸上升,磷保留率則逐漸下降。
固定pH值,並在磷濃度1.5-4.5 mmol/L(46.46-139.37 mg/L)、鎂離子0.5-1.5 mmol/L(12.1-36.5 mg/L)及鈣離子0.75-2.25 mmol/L(30-120 mg/L)條件下使用反應曲面法進行規劃與分析,得到最佳解為當磷濃度1.5 mmol/L、鈣離子濃度0.75 mmol/L與鎂濃度1.5 mmol/L之狀態並預期出其反應值MFI0.2為-0.3、磷保留率為100 %,代表結垢情形不易產生,磷酸鹽呈現溶解態,對於後續磷回收為最佳狀態。最差解為當磷濃度4.5 mmol/L、鈣離子濃度2.25 mmol/L與鎂濃度1.5 mmol/L之狀態,預期反應值則為MFI0.2為 3.59、磷保留率為94.8 %,代表有結垢產生,磷酸鹽也發生沉澱反應,造成磷保留率下降,該狀態容易使在前處理時無機物沉澱出顆粒物造成薄膜結垢之現象,產生磷酸鹽保留率不佳。此外,長期薄膜過濾中,與最佳條件比較,最差條件之阻力明顯上升,其中,在薄膜過濾進行中,容易先導致孔堵塞再形成濾餅層,造成TMP迅速上升。在阻力分析中發現最佳條件之孔阻力占比為12 %,最差條件之孔阻力占比為30 %,因此,最主要導致脫水濾液無機性結垢之原因為不可逆結垢。
Due to the increase in the amount of phosphate mining in recent years, the issue of phosphorus recovery has gradually received attention. The anaerobic digestion process in sewage treatment has high phosphorus and high nitrogen components, but it contains a lot of suspended solids and organic matter, which is easy to make recycling ineffective. Therefore, optimizing the quality of phosphorus recovery by pretreatment is a required procedure for future applications. However, when membrane filtration is used for pretreatment, it is easy to encounter the problem of fouling and scaling, resulting in poor filtration efficiency increasing costs, and reducing effectiveness.
In this study, the fouling potential and phosphorus retention rate experiments were carried out using synthetic sludge dewatering filtrate. The batch experiment and response surface methodology were used to explore the optimal condition for the concentration range of the actual wastewater treatment plant, Moreover using long-term membrane filtration experiments to compare and verify the difference in fouling characteristics between the optimal and worst conditions.
The water quality analysis of the wastewater from the actual wastewater treatment plant showed that the pH of the sludge dewatering filtrate was 7.9±0.1, the phosphate - phosphorus concentration was 128.1±8.2 mg/L, the ammonium - nitrogen concentration was 771.3±68.1 mg/L, and the total solids concentration was 1,163±80.1 mg/L and TOC was 56.2±10.3 mg/L. The pH of the anaerobic digestion supernatant was 7.6±0.6, the phosphate - phosphorus concentration was 170.7±42.0 mg/L, the ammonium - nitrogen concentration was 871.2±102.2 mg/L, the total solid concentration was 33,193±166.2 mg/L and the COD was 698.9±21.6 mg /L, compared sludge dewatering filtrate to anaerobic digestion supernatant, due to the higher suspended solids and organic matter in the anaerobic digestion supernatant, it is difficult to membrane pretreatment and phosphorus recovery, while the sludge dewatering filtrate contains less suspended solids and still has a higher phosphorus concentration. Therefore, the sludge dewatering filtrate has better recovery potential.
In the batch experiment, different pH values and calcium concentrations were used to do MFI0.2 and phosphorus retention experiments. According to the results, higher pH results in higher MFI0.2 and lower phosphorus retention. In pH 6-7, it has lower MFI0.2 and higher phosphorus retention rate, because the pH range of the precipitation reaction is about pH 7.5-12. When the pH is lower than this range, particles are not easily generated. When the pH is 7.5-9, with the increase of pH, The IAP in solution is higher than the Ksp of various phosphate compounds, such as magnesium ammonium phosphate, hydroxyapatite, etc., and the precipitate is generated. This leads to membrane scaling. At the same time, it is found that with the increase of pH and calcium concentration from low to high, MFI0.2, particle size, and possible types of precipitates all increase gradually, while phosphorus retention rate gradually decreases.
When the pH is fixed at 7.5 and analyzed by the response surface methodology under phosphate - phosphorus concentration 1.5-4.5 mmol/L (46.46-139.37 mg/L), magnesium ion 0.5-1.5 mmol/L (12.1-36.5 mg/L) and calcium ion 0.75-2.25 mmol/L (30-120 mg/L), the optimal condition is obtained when the concentration of phosphate - phosphorus is 1.5 mmol/L, the concentration of calcium is 0.75 mmol/L and the concentration of magnesium is 1.5 mmol/L, and the reaction value MFI0.2 is expected to be -0.3, the phosphorus retention rate is 100%. It means that the scaling situation is not easy to occur, and the phosphate is in a dissolved state, which is optimal for subsequent phosphorus recovery. The worst condition is that when the phosphate - phosphorus concentration is 4.5 mmol/L, the calcium concentration is 2.25 mmol/L and the magnesium concentration is 1.5 mmol/L, the expected reaction value is MFI0.2 of 3.59 and phosphorus retention rate of 94.8 %, which means membrane scaling. The precipitation reaction causes the phosphorus retention rate to decrease. This state is likely to cause the inorganic compound to precipitate out of particles during pretreatment, cause membrane scaling, and poor phosphorus retention rate. In addition, in the long-term membrane filtration, compared with the optimal conditions, the resistance of the worst conditions increased significantly. Among them, during the membrane filtration process, it is easy to cause the membrane pores to block first and then form the filter cake layer, resulting in a rapid increase in TMP. In the resistance analysis, it was found that the pore-blocking ratio of the best condition was 12%, and the pore-blocking ratio of the worst condition was 30%. Therefore, the main reason for the inorganic scaling of the dewatering filtrate was irreversible scaling.
Abeywardena, M. R., Elkaduwe, R. K. W. H. M. K., Karunarathne, D. G. G. P., Pitawala, H. M. T. G. A., Rajapakse, R. M. G., Manipura, A., & Mantilaka, M. M. M. G. P. G. (2020). Surfactant assisted synthesis of precipitated calcium carbonate nanoparticles using dolomite: Effect of pH on morphology and particle size. Advanced Powder Technology, 31(1), 269-278. doi:10.1016/j.apt.2019.10.018
Ahn, W.-Y., Kalinichev, A. G., & Clark, M. M. (2008). Effects of background cations on the fouling of polyethersulfone membranes by natural organic matter: Experimental and molecular modeling study. Journal of Membrane Science, 309(1-2), 128-140. doi:10.1016/j.memsci.2007.10.023
Al-Gebory, L., & Mengüç, M. P. (2018). The effect of pH on particle agglomeration and optical properties of nanoparticle suspensions. Journal of Quantitative Spectroscopy and Radiative Transfer, 219, 46-60. doi:10.1016/j.jqsrt.2018.07.020
Al-Juboori, R. A., & Yusaf, T. (2012). Biofouling in RO system: Mechanisms, monitoring and controlling. Desalination, 302, 1-23. doi:10.1016/j.desal.2012.06.016
Al‐Qasas, N., Rohani, S. J. S. s., & technology. (2005). Synthesis of pure hydroxyapatite and the effect of synthesis conditions on its yield, crystallinity, morphology and mean particle size. 40(15), 3187-3224.
Alhadidi, A., Kemperman, A. J. B., Blankert, B., Schippers, J. C., Wessling, M., & van der Meer, W. G. J. (2011). Silt Density Index and Modified Fouling Index relation, and effect of pressure, temperature and membrane resistance. Desalination, 273(1), 48-56. doi:10.1016/j.desal.2010.11.031
Alhadidi, A., Kemperman, A. J. B., Schippers, J. C., Wessling, M., & van der Meer, W. G. J. (2011). The influence of membrane properties on the Silt Density Index. Journal of Membrane Science, 384(1-2), 205-218. doi:10.1016/j.memsci.2011.09.028
Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755-781. doi:10.1016/j.pecs.2008.06.002
Arcas-Pilz, V., Rufi-Salis, M., Parada, F., Petit-Boix, A., Gabarrell, X., & Villalba, G. (2021). Recovered phosphorus for a more resilient urban agriculture: Assessment of the fertilizer potential of struvite in hydroponics. Sci Total Environ, 799, 149424. doi:10.1016/j.scitotenv.2021.149424
Blocher, C., Niewersch, C., & Melin, T. (2012). Phosphorus recovery from sewage sludge with a hybrid process of low pressure wet oxidation and nanofiltration. Water Res, 46(6), 2009-2019. doi:10.1016/j.watres.2012.01.022
Cerqueira, U., Bezerra, M. A., Ferreira, S. L. C., de Jesus Araujo, R., da Silva, B. N., & Novaes, C. G. (2021). Doehlert design in the optimization of procedures aiming food analysis - A review. Food Chem, 364, 130429. doi:10.1016/j.foodchem.2021.130429
Chuang, S. H., Chang, W. C., Chang, M. C., & Sung, M. A. (2009). The effects of soluble organic matters on membrane fouling index. Bioresour Technol, 100(5), 1875-1877. doi:10.1016/j.biortech.2008.09.054
Cichy, B., Kuzdzal, E., & Krzton, H. (2019). Phosphorus recovery from acidic wastewater by hydroxyapatite precipitation. J Environ Manage, 232, 421-427. doi:10.1016/j.jenvman.2018.11.072
Cojocaru, C., & Zakrzewska-Trznadel, G. (2007). Response surface modeling and optimization of copper removal from aqua solutions using polymer assisted ultrafiltration. Journal of Membrane Science, 298(1-2), 56-70. doi:10.1016/j.memsci.2007.04.001
Cordell, D., Drangert, J.-O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292-305. doi:10.1016/j.gloenvcha.2008.10.009
Cui, Z. F., Jiang, Y., & Field, R. W. (2010). Fundamentals of Pressure-Driven Membrane Separation Processes. In Membrane Technology (pp. 1-18).
Cydzik-Kwiatkowska, A., & Zielińska, M. (2020). Waste-organics supported treatment of nitrogen-rich digester supernatant. Journal of Water Process Engineering, 37. doi:10.1016/j.jwpe.2020.101385
Dahdouh, L., Delalonde, M., Ricci, J., Servent, A., Dornier, M., & Wisniewski, C. (2016). Size-cartography of orange juices foulant particles: Contribution to a better control of fouling during microfiltration. Journal of Membrane Science, 509, 164-172. doi:10.1016/j.memsci.2016.01.052
Dersoir, B., Schofield, A. B., Robert de Saint Vincent, M., & Tabuteau, H. (2019). Dynamics of pore fouling by colloidal particles at the particle level. Journal of Membrane Science, 573, 411-424. doi:10.1016/j.memsci.2018.12.025
Dorofeev, A. G., Nikolaev, Y. A., Kozlov, M. N., Kevbrina, M. V., Agarev, A. M., Kallistova, A. Y., & Pimenov, N. V. (2017). Modeling of anammox process with the biowin software suite. Applied Biochemistry and Microbiology, 53(1), 78-84. doi:10.1134/s0003683817010100
Du, X., Zhang, K., Yang, H., Li, K., Liu, X., Wang, Z., . . . Liang, H. (2019). The relationship between size-segregated particles migration phenomenon and combined membrane fouling in ultrafiltration processes: The significance of shear stress. Journal of the Taiwan Institute of Chemical Engineers, 96, 45-52. doi:10.1016/j.jtice.2018.11.016
FOLEY, G. ( 2013). Membrane Filtration.
Gao, Y., Chen, D., Weavers, L. K., & Walker, H. W. (2012). Ultrasonic control of UF membrane fouling by natural waters: Effects of calcium, pH, and fractionated natural organic matter. Journal of Membrane Science, 401-402, 232-240. doi:10.1016/j.memsci.2012.02.009
Gerardo, M. L., Zacharof, M. P., & Lovitt, R. W. (2013). Strategies for the recovery of nutrients and metals from anaerobically digested dairy farm sludge using cross-flow microfiltration. Water Res, 47(14), 4833-4842. doi:10.1016/j.watres.2013.04.019
Guo, W., Ngo, H. H., & Li, J. (2012). A mini-review on membrane fouling. Bioresour Technol, 122, 27-34. doi:10.1016/j.biortech.2012.04.089
Gupta, K., & Chellam, S. (2020). Contributions of surface and pore deposition to (ir)reversible fouling during constant flux microfiltration of secondary municipal wastewater effluent. Journal of Membrane Science, 610. doi:10.1016/j.memsci.2020.118231
Hallas, J., Mackowiak, C., Wilkie, A., & Harris, W. (2019). Struvite Phosphorus Recovery from Aerobically Digested Municipal Wastewater. Sustainability, 11(2). doi:10.3390/su11020376
Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Kluwer Academic Publishers.
Huang, H., Liu, J., & Ding, L. (2015). Recovery of phosphate and ammonia nitrogen from the anaerobic digestion supernatant of activated sludge by chemical precipitation. Journal of Cleaner Production, 102, 437-446. doi:10.1016/j.jclepro.2015.04.117
Jiang, S., Li, Y., & Ladewig, B. P. (2017). A review of reverse osmosis membrane fouling and control strategies. Sci Total Environ, 595, 567-583. doi:10.1016/j.scitotenv.2017.03.235
Jowitt, S. M., Mudd, G. M., & Thompson, J. F. H. (2020). Future availability of non-renewable metal resources and the influence of environmental, social, and governance conflicts on metal production. Communications Earth & Environment, 1(1). doi:10.1038/s43247-020-0011-0
Jowitt, S. M., Mudd, G. M., Thompson, J. F. J. C. E., & Environment. (2020). Future availability of non-renewable metal resources and the influence of environmental, social, and governance conflicts on metal production. 1(1), 1-8.
Jun, D., Kim, Y., Hafeznezami, S., Yoo, K., Hoek, E. M. V., & Kim, J. (2017). Biologically induced mineralization in anaerobic membrane bioreactors: Assessment of membrane scaling mechanisms in a long-term pilot study. Journal of Membrane Science, 543, 342-350. doi:10.1016/j.memsci.2017.08.025
Jupp, A. R., Beijer, S., Narain, G. C., Schipper, W., & Slootweg, J. C. J. C. S. R. (2021). Phosphorus recovery and recycling–closing the loop. 50(1), 87-101.
Karimifard, S., & Alavi Moghaddam, M. R. (2018). Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. Sci Total Environ, 640-641, 772-797. doi:10.1016/j.scitotenv.2018.05.355
Kim, S., Lee, D. W., & Cho, J. (2016). Application of direct contact membrane distillation process to treat anaerobic digestate. Journal of Membrane Science, 511, 20-28. doi:10.1016/j.memsci.2016.03.038
Lahav, O., Telzhensky, M., Zewuhn, A., Gendel, Y., Gerth, J., Calmano, W., & Birnhack, L. (2013). Struvite recovery from municipal-wastewater sludge centrifuge supernatant using seawater NF concentrate as a cheap Mg(II) source. Separation and Purification Technology, 108, 103-110. doi:10.1016/j.seppur.2013.02.002
Le, V.-G., Vo, D.-V. N., Nguyen, N.-H., Shih, Y.-J., Vu, C.-T., Liao, C.-H., & Huang, Y.-H. (2021). Struvite recovery from swine wastewater using fluidized-bed homogeneous granulation process. Journal of Environmental Chemical Engineering, 9(3). doi:10.1016/j.jece.2020.105019
Lew, B., Phalah, S., Sheindorf, C., Kummel, M., Rebhun, M., & Lahav, O. (2010). Favorable Operating Conditions for Obtaining High-Value Struvite Product from Sludge Dewatering Filtrate. Environmental Engineering Science, 27(9), 733-741. doi:10.1089/ees.2009.0279
Lewis, W. J. T., Mattsson, T., Chew, Y. M. J., & Bird, M. R. (2017). Investigation of cake fouling and pore blocking phenomena using fluid dynamic gauging and critical flux models. Journal of Membrane Science, 533, 38-47. doi:10.1016/j.memsci.2017.03.020
Li, X., Shen, S., Xu, Y., Guo, T., Dai, H., & Lu, X. (2021). Application of membrane separation processes in phosphorus recovery: A review. Sci Total Environ, 767, 144346. doi:10.1016/j.scitotenv.2020.144346
Lin, H., Chen, Y., Shen, N., Deng, Y., Yan, W., Ruhyadi, R., & Wang, G. (2020). Effects of individual volatile fatty acids (VFAs) on phosphorus recovery by magnesium ammonium phosphate. Environ Pollut, 261, 114212. doi:10.1016/j.envpol.2020.114212
Lin, T., Lu, Z., & Chen, W. (2015). Interaction mechanisms of humic acid combined with calcium ions on membrane fouling at different conditions in an ultrafiltration system. Desalination, 357, 26-35. doi:10.1016/j.desal.2014.11.007
Liu, X., & Wang, J. (2019). Impact of calcium on struvite crystallization in the wastewater and its competition with magnesium. Chemical Engineering Journal, 378. doi:10.1016/j.cej.2019.122121
Liu, Y.-J., & Sun, D. D. (2012). Particles size-associated membrane fouling in microfiltration of denitrifying granules supernatant. Chemical Engineering Journal, 181-182, 494-500. doi:10.1016/j.cej.2011.12.009
Loria, K. G., Aragón, J. C., Torregiani, S. M., Pilosof, A. M. R., & Farías, M. E. (2018). Flow properties of caseinomacropeptide aqueous solutions: Effect of particle size distribution, concentration, pH and temperature. Lwt, 93, 243-248. doi:10.1016/j.lwt.2018.03.050
Macha, I., Boonyang, U., Cazalbou, S., Ben-Nissan, B., Charvillat, C., Oktar, F., & Grossin, D. (2015). Comparative study of Coral Conversion, Part 2: Microstructural evolution of calcium phosphate. JOUrnal of the Australian Ceramic Society, 51, 149-159.
Marti, N., Ferrer, J., Seco, A., & Bouzas, A. (2008). Optimisation of sludge line management to enhance phosphorus recovery in WWTP. Water Res, 42(18), 4609-4618. doi:10.1016/j.watres.2008.08.012
Metzger, U., Le-Clech, P., Stuetz, R. M., Frimmel, F. H., & Chen, V. (2007). Characterisation of polymeric fouling in membrane bioreactors and the effect of different filtration modes. Journal of Membrane Science, 301(1-2), 180-189. doi:10.1016/j.memsci.2007.06.016
Pap, S., Stankovits, G. J., Gyalai-Korpos, M., Mako, M., Erdelyi, I., & Turk Sekulic, M. (2021). Biochar application in organics and ultra-violet quenching substances removal from sludge dewatering leachate for algae production. J Environ Manage, 298, 113446. doi:10.1016/j.jenvman.2021.113446
Park, C., Kim, H., Hong, S., & Choi, S.-I. (2006). Variation and prediction of membrane fouling index under various feed water characteristics. Journal of Membrane Science, 284(1-2), 248-254. doi:10.1016/j.memsci.2006.07.036
Ping, Q., Li, Y., Wu, X., Yang, L., & Wang, L. (2016). Characterization of morphology and component of struvite pellets crystallized from sludge dewatering liquor: Effects of total suspended solid and phosphate concentrations. J Hazard Mater, 310, 261-269. doi:10.1016/j.jhazmat.2016.02.047
Polyakov, Y. S., & Zydney, A. L. (2013). Ultrafiltration membrane performance: Effects of pore blockage/constriction. Journal of Membrane Science, 434, 106-120. doi:10.1016/j.memsci.2013.01.052
Salinas Rodriguez, S. G., Sithole, N., Dhakal, N., Olive, M., Schippers, J. C., & Kennedy, M. D. (2019). Monitoring particulate fouling of North Sea water with SDI and new ASTM MFI0.45 test. Desalination, 454, 10-19. doi:10.1016/j.desal.2018.12.006
Scott, K. J. H. o. i. m. i. t. m. s. r. e. E. A. T. (1995). Introduction to membrane separations. 3-185.
Shaddel, S., Grini, T., Andreassen, J.-P., Østerhus, S. W., & Ucar, S. (2020). Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: towards enhancing sustainability and economics of struvite crystallization. Chemosphere, 256, 126968. doi:10.1016/j.chemosphere.2020.126968
Shaddel, S., Ucar, S., Andreassen, J. P., & Osterhus, S. W. (2019). Enhancing efficiency and economics of phosphorus recovery process by customizing the product based on sidestream characteristics - an alternative phosphorus recovery strategy. Water Sci Technol, 79(9), 1777-1789. doi:10.2166/wst.2019.178
Sim, L. N., Chong, T. H., Taheri, A. H., Sim, S. T. V., Lai, L., Krantz, W. B., & Fane, A. G. (2018). A review of fouling indices and monitoring techniques for reverse osmosis. Desalination, 434, 169-188. doi:10.1016/j.desal.2017.12.009
Sim, L. N., Ye, Y., Chen, V., & Fane, A. G. (2010). Crossflow Sampler Modified Fouling Index Ultrafiltration (CFS-MFIUF)—An alternative Fouling Index. Journal of Membrane Science, 360(1-2), 174-184. doi:10.1016/j.memsci.2010.05.010
Simoes, F., Colston, R., Rosa-Fernandes, C., Vale, P., Stephenson, T., & Soares, A. (2020). Predicting the potential of sludge dewatering liquors to recover nutrients as struvite biominerals. Environmental Science and Ecotechnology, 3. doi:10.1016/j.ese.2020.100052
Siobhan F.E. Boerlage , M. D. K., Melvyn R. Dickson ,, & Dima E.Y. El-Hodali , J. C. S. (2002). The modified fouling index using ultrafiltration membranes(MFI-UF): characterisation, filtration mechanisms andproposed reference membrane. Journal of Membrane Science, 197, 1-21.
Taheri, A. H., Sim, L. N., Haur, C. T., Akhondi, E., & Fane, A. G. (2013). The fouling potential of colloidal silica and humic acid and their mixtures. Journal of Membrane Science, 433, 112-120. doi:10.1016/j.memsci.2013.01.034
Tarragó, E., Sciarria, T. P., Ruscalleda, M., Colprim, J., Balaguer, M. D., Adani, F., & Puig, S. (2018). Effect of suspended solids and its role on struvite formation from digested manure. Journal of Chemical Technology & Biotechnology, 93(9), 2758-2765. doi:10.1002/jctb.5651
Tourbin, M., Brouillet, F., Galey, B., Rouquet, N., Gras, P., Abi Chebel, N., . . . Frances, C. (2020). Agglomeration of stoichiometric hydroxyapatite: Impact on particle size distribution and purity in the precipitation and maturation steps. Powder Technology, 360, 977-988. doi:10.1016/j.powtec.2019.10.050
van Rensburg, P., Musvoto, E. V., Wentzel, M. C., & Ekama, G. A. (2003). Modelling multiple mineral precipitation in anaerobic digester liquor. Water Research, 37(13), 3087-3097. doi:10.1016/s0043-1354(03)00173-8
VERDOUW, J. C. S. A. J. (1980). The modified fouling index, a method of determining the fouling characteristics of water. Desalination, 32, 137-148.
Wang, R., Liang, D., Liu, X., Fan, W., Meng, S., & Cai, W. (2020). Effect of magnesium ion on polysaccharide fouling. Chemical Engineering Journal, 379. doi:10.1016/j.cej.2019.122351
Wang, Z., Ma, J., Tang, C. Y., Kimura, K., Wang, Q., & Han, X. (2014). Membrane cleaning in membrane bioreactors: A review. Journal of Membrane Science, 468, 276-307. doi:10.1016/j.memsci.2014.05.060
Wu, J., He, C., Jiang, X., & Zhang, M. (2011). Modeling of the submerged membrane bioreactor fouling by the combined pore constriction, pore blockage and cake formation mechanisms. Desalination, 279(1-3), 127-134. doi:10.1016/j.desal.2011.05.069
Wu, Z., Qiao, W., Liu, Y., Yao, J., Gu, C., Zheng, X., & Dong, R. (2022). Contribution of chemical precipitation to the membrane fouling in a high-solids type anaerobic membrane bioreactor treating OFMSW leachate. Journal of Membrane Science, 647. doi:10.1016/j.memsci.2022.120298
Yan, Z., Liu, K., Yu, H., Liang, H., Xie, B., Li, G., . . . van der Bruggen, B. (2019). Treatment of anaerobic digestion effluent using membrane distillation: Effects of feed acidification on pollutant removal, nutrient concentration and membrane fouling. Desalination, 449, 6-15. doi:10.1016/j.desal.2018.10.011
Yao, M., Zhang, K., & Cui, L. (2010). Characterization of protein–polysaccharide ratios on membrane fouling. Desalination, 259(1-3), 11-16. doi:10.1016/j.desal.2010.04.049
Ye, X., Ye, Z.-L., Lou, Y., Pan, S., Wang, X., Wang, M. K., & Chen, S. (2016). A comprehensive understanding of saturation index and upflow velocity in a pilot-scale fluidized bed reactor for struvite recovery from swine wastewater. Powder Technology, 295, 16-26. doi:10.1016/j.powtec.2016.03.022
Zacharof, M.-P., & Lovitt, R. W. (2014). The filtration characteristics of anaerobic digester effluents employing cross flow ceramic membrane microfiltration for nutrient recovery. Desalination, 341, 27-37. doi:10.1016/j.desal.2014.02.034
Zacharof, M.-P., Mandale, S. J., Oatley-Radcliffe, D., & Lovitt, R. W. (2019). Nutrient recovery and fractionation of anaerobic digester effluents employing pilot scale membrane technology. Journal of Water Process Engineering, 31. doi:10.1016/j.jwpe.2019.100846
Zhang, M., Lin, H., Shen, L., Liao, B.-Q., Wu, X., & Li, R. (2017). Effect of calcium ions on fouling properties of alginate solution and its mechanisms. Journal of Membrane Science, 525, 320-329. doi:10.1016/j.memsci.2016.12.006
行政院環保署統計室(2020)。廢污水產生量及排放量。
行政院環境保護署環境保護人員訓練所廢(污)水處理專責人員訓練教材(2020)。廢水處理單元操作維護。
李靖儀 (2011)。防電磁波干擾製程參數最佳化之研究 (碩士)。東海大學。
林李旺(2018)。突破品質水準實驗設計與田口方法之實務應用。全華圖書出版社。
桃園市政府水務局(2019)。桃園水資源回收中心。
張維中 (2015)。公共污水處理廠污泥厭氧消化效能評估-超音波水解及質量平衡分析。
莊順興(2014)。薄膜技術與積垢指標。Retrieved from https://www.edf.org.tw/Documents/01.%E8%8E%8A%E9%A0%86%E8%88%88%20%E6%95%99%E6%8E%88-%E6%B0%B4%E5%9B%9E%E6%94%B6%E5%86%8D%E5%88%A9%E7%94%A8%E6%8A%80%E8%A1%93.pdf
游雅淳 (2012)。垂直式與掃流式淤泥積垢指標之比較研究 (碩士)。朝陽科技大學。
黃日輝 (2008)。TFT-LCD 業鋁蝕刻製程含磷廢水最佳可行控制技術評估。
黃明樟 (2001)。薄膜程序處理染整業放流水回收再利用之研究 (碩士)。淡江大學。
黃欣栩(2021)。108~109年度全國公共污水處理廠營建評鑑成果分享。
經濟部工業局(2005)。廢水污泥減量技術手冊。
葉怡成(2006)。實驗計畫法一 製程與產品最佳化。五南圖書出版股份有限公司。
鄭東文、林智偉 (2014)。薄膜過濾家族。科學發展。Retrieved from https://ejournal.stpi.narl.org.tw/sd/download?source=10308-06.pdf&vlId=FFBA62B7-FAEB-4694-B973-2590C23D8CA3&nd=1&ds=1
鍾泰華 (2016)。以反應曲面法進行U型引伸彎曲之最佳化分析(碩士)。國立中央大學。