| 研究生: |
洪炳煌 Bing-Huang Hong |
|---|---|
| 論文名稱: |
可分解友矩陣之數值域 Numerical Ranges of Reducible Companion Matrices |
| 指導教授: |
高華隆
Hwa–Long Gau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 20 |
| 中文關鍵詞: | 可分解的 、友矩陣 、數值域 |
| 外文關鍵詞: | Companion Matrix, Reducible, Numerical Range |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們首先學習一些關於友矩陣數值域的基本性質。參考文獻1特別探討可分解的友矩陣,同時還證明一個友矩陣的數值域是以原點為圓心的圓盤,其充分必要條件在於這個友矩陣是Jordan區塊。而我們在此僅針對那些數值域為橢圓形的可分解友矩陣作討論,並試圖給這些矩陣一個完整的特徵。
從論文第三節可以看出所有的4 × 4可分解友矩陣將完全被解決,原因是我們會證明一個4 × 4可分解友矩陣的數值域是橢圓,若且為若,這個矩陣的光譜為{a,-a,i/a,-i/a},其中|a|≧sqrt(1+sqrt(2));或者這個矩陣的光譜為{a,ai,-1/a,-i/a},其中|a|≧1+sqrt(2)。最後,我們在論文的第四節就把討論的對象擴大為6 × 6可分解友矩陣。
In this thesis, we study some properties of numerical ranges of companion matrices. Previous works [1] in this respect are the criterion for these matrices to be reducible and show that the numerical range of a companion matrix is a circular disc centered at the origin if and only if the matrix equals the Jordan block. Here we want to give a complete characterization for reducible companion matrices with elliptical numerical range.
In Section 3, 4 × 4 reducible companion matrices will be completely solved. We show that a 4 × 4 reducible companion matrix A has an ellipse as its numerical range if and only if either σ(A)={a,-a,i/a,-i/a} where |a|≧sqrt(1+sqrt(2)), or σ(A)={a,ai,-1/a,-i/a} where |a|≧1+sqrt(2). Here σ(A) denotes the spectrum of the matrix A. In Section 4, we discuss the cases for 6 × 6 reducible companion matrices.
[1] Hwa–Long Gau and Pei Yuan Wu, Companion matrices: reducibility, numerical ranges and similarity to contractions, Linear Algebra Appl., 383 (2004), 127–142.
[2] U.Haagerup, P. de la Harpe, The numerical radius of a nilpotent operator on a Hilbert space, Proc. Amer. Math. Soc. 115 (1992) 371–379.
[3] R. A. Horn and C. R. Johnson. Matrix analysis, Cambridge University Press, Cambridge, 1985.
[4] R. A. Horn and C. R. Johnson. Topics in matrix analysis, Cambridge University Press, Cambridge, 1991.
[5] D. S. Keeler, L. Rodman and I. M. Spitkovsky, The numerical range of 3 × 3 matrices, Linear Algebra Appl., 252 (1997), 115–139.