| 研究生: |
林佳玉 Jia-Yu Lin |
|---|---|
| 論文名稱: |
不同學院學生對二十一世紀關鍵能力與計算性思維、線上學習行為與微積分成績之間的分析與討論 |
| 指導教授: |
蕭嘉璋
Jia-Zhang Xiao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 二十一世紀關鍵能力與計算性思維 、線上學習行為 、微積分成績 |
| 外文關鍵詞: | 5C abilities in the 21st century and computational thinking, online learning behavior, calculus score |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在藉由BookRoll學習系統去探討學生的線上學習行為、二十一世紀關鍵能力與計算性思維以及微積分成績之間的相互關係,二十一世紀關鍵能力中包含了批判性思維、問題解決、溝通能力、團隊合作與創造性思維,並運用SEM結構方程模型分析探討學生二十一世紀關鍵能力與計算性思維、線上學習行為和微積分成績之間的關係。
研究對象為中央大學109學年度大學部有修習微積分課程之學生共938名,以該名學生施測之問卷結果為主要資料。本研究編制一份用於測量學生的二十一世紀關鍵能力與計算性思維之問卷於會考時間進行施測。藉由問卷資料和學生在線上學習系統的瀏覽紀錄資料與學業修習狀況進行統計數據分析,統整出二十一世紀關鍵能力與計算性思維、線上學習行為和微積分成績之間的相互關係。
結果發現,學生的二十一世紀關鍵能力與計算性思維對於學生的微積分成績為顯著正相關;學生的線上學習行為對於學生的微積分成績為顯著正相關;但在學生的二十一世紀關鍵能力與計算性思維對於學生的線上學習行為方面為無顯著相關,故我們可以藉由學生的二十一世紀關鍵能力與計算性思維以及學生在BookRoll系統的線上學習行為去預測學生的學習成效。
The purpose of this research is to explore the online learning behaviors of the BookRoll learning system, the relationship between 5C abilities in the 21st century and computational thinking, and calculus students. The 5C abilities of the 21st century can generate critical thinking, problem-solving, communication skills, collaboration and creativity, and use SEM conceptual model analysis to explore the relationship between students' 5C abilities and computational thinking, online learning behavior and calculus.
The research object is a total of 938 students who have taken calculus courses in the 109th academic year of National Central University. The main data is the result of the questionnaire conducted by the student. In this study, a questionnaire to measure students' 5C abilities in the 21st century and computational thinking was developed and tested during the examination time. Analyze statistical data based on the questionnaire data, the browsing record data of the students' online learning system, and the academic study status to unify the relationship between 5C abilities in the 21st century and computational thinking, online learning behaviors, and calculus performance.
The results found that students’ 5C abilities in the 21st century and computational thinking are significantly positively correlated with students’ calculus scores ; online learning behavior is significantly positively correlated with students' calculus scores ; but students’ 5C abilities in the 21st century and computational thinking are not significantly correlated with students’ online learning behavior. Therefore, we can use students’ 5C abilities in the 21st century and computational thinking and the online learning behavior in the BookRoll system to predict the learning effectiveness of the students.
1.Autor, D. H., Levy, F., & Murnane, R. J. (2003). The skill content of recent technological change: An empirical exploration. The Quarterly journal of economics, 118(4), 1279-1333.
2.Avramides, K., Hunter, J., Oliver, M. and Luckin, R. (2015) ‘A method for teacher inquiry in cross‐curricular projects: lessons from a case study’, British Journal of Educational Technology, Vol. 46, No. 2, pp.249–264.
3.Belland, B.R., Walker, A.E., Olsen, M.W. and Leary, H. (2015) ‘A pilot meta-analysis of computer-based scaffolding in STEM education’, Journal of Educational Technology and Society, Vol. 18, No. 1, p.183.
4.Bloom, B.S. ,Engelahar, M.D. ,Frust, E.J., Hill, W.H. & Krathwohl, D.R.(1956). Taxonomy of Educational Objective,Handbook1:Cognitive Domain. N.Y. : David McKay.
5.Condon, M. and Wichowsky, A. (2018) ‘Developing citizen-scientists: effects of an inquiry-based science curriculum on STEM and civic engagement’, The Elementary School Journal, Vol. 119, No. 2, pp.196–222.
6.Dwyer, C.P., Hogan, M.J. and Stewart, I. (2014) ‘An integrated critical thinking framework for the 21st century’, Thinking Skills and Creativity, Vol. 12, pp.43–52.
7.Gonzalez, H.B. and Kuenzi, J.J. (2012) ‘Science, technology, engineering, and mathematics (STEM) education: a primer,’ CRS Report, (R42642), Congressional Research Service, Library of Congress.
8.Honey, M., Pearson, G. and Schweingruber, H. (2014) STEM Integration in K-12 Education: Status, Prospects, and An Agenda for Research, National Academies Press, Washington, DC.
9.Hwang, G. J., Hung, C. M., & Chen, N. S. (2014). Improving learning achievements, motivations and problem-solving skills through a peer assessment-based game development approach. Educational Technology Research and Development, 62(2), 129-145.
10.Hwang, G. J., Li, K. C., & Lai, C. L. (2020). Trends and strategies for conducting effective STEM research and applications: a mobile and ubiquitous learning perspective. International Journal of Mobile Learning and Organisation, 14(2), 161-183.
11.Klimaitis, C. C. (2020). Instructional Practices for Science, Technology, Engineering, and Mathematics (STEM) Lessons for K–12 Students With Disabilities: Perceptions of Teachers From a Virginia Suburban School Division (Doctoral dissertation, Virginia Tech).
12.Lai, C. L., & Hwang, G. J. (2014). Effects of mobile learning time on students' conception of collaboration, communication, complex problem–solving, meta–cognitive awareness and creativity. International Journal of Mobile Learning and Organisation, 8(3-4), 276-291.
13.Lee, A. (2015) ‘Determining the effects of computer science education at the secondary level on STEM major choices in postsecondary institutions in the United States’, Computers & Education, Vol. 88, pp.241–255.
14.Lo, C. K., Hew, K. F., & Chen, G. (2017). Toward a set of design principles for mathematics flipped classrooms: A synthesis of research in mathematics education. Educational Research Review, 22, 50-73.
15.Park, S. Y. (2009). An analysis of the technology acceptance model in understanding university students' behavioral intention to use e-learning. Journal of Educational Technology & Society, 12(3), 150-162.
16.Shih, M., Liang, J. C., & Tsai, C. C. (2019). Exploring the role of university students’ online self-regulated learning in the flipped classroom: a structural equation model. Interactive Learning Environments, 27(8), 1192-1206.
17.Tsai, C.C. (2005) ‘Preferences toward Internet-based learning environments: high school students’ perspectives for science learning’, Educational Technology & Society, Vol. 8, No. 2, pp.203–213.
18.Tseng, T. C. (2019). On Competency-Based Curriculum and Instruction Throxigh Project-Based Learning Based on the Empirical Evidences of the Implementation of 21st Century Skills. Ke Cheng Yan Jiu= Journal of Curriculum Studies, 14(2), 85-106.
19.Wang, S. L., & Wu, P. Y. (2008). The role of feedback and self-efficacy on web-based learning: The social cognitive perspective. Computers & Education, 51(4), 1589-1598.
20.Wang, H. Y., Huang, I., & Hwang, G. J. (2016). Effects of a question prompt-based concept mapping approach on students’ learning achievements, attitudes and 5C competences in project-based computer course activities. Journal of Educational Technology & Society, 19(3), 351-364.
21.Zimmerman, B. J. (1998). Academic studing and the development of personal skill: A self-regulatory perspective. Educational psychologist, 33(2-3), 73-86.
22.鄭蕙如, & 林世華. (2004). Bloom 認知領域教育目標分類修訂版理論與實務之探討─ 以九年一貫課程數學領域分段能力指標為例. NTTU EDUCATIONAL RESEARCH JOURNAL, 15(2), 247-274.
23.施登堯. (2018). 學習者中心與學生中心之內涵解析. 臺灣教育評論月刊, 7(7), 94-98.
24.主管管理才能評鑑量表之建立與信效度分析-以某商銀為例. 2000. PhD Thesis. National Central University.
25.丁振凡, & 张恒. (2016). Java 教学中计算思维能力培养. 实验技术与管理, (2016 年 06), 7-9.
26.郭生玉. (1980). 教師期望與教師行為及學生學習行為關係之分析. 教育心理學報, (13), 133-152.
27.馬政豪. (2010). 線上學習行為分數與學習成就預測模型相關度之探討. 中原大學資訊工程研究所學位論文, 1-53.
28.趙嘉浩.(2016). STEAM機器人課程鷹架對5C關鍵能力與機器人學習自我效能影響之研究. 國立臺灣科技大學數位學習與教育研究所論文, 1-76.