跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭加偉
Chia-wei Cheng
論文名稱: 流行音樂社群網站之經營效率分析
指導教授: 沈建文
Chien-wen Shen
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 54
中文關鍵詞: 音樂產業社群網站資料包絡分析法Facebook
外文關鍵詞: Music industry, Social network, Data envelopment analysis, Facebook
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今音樂產業已經更關注社群與行動商務的策略,因為社群媒體已經改變了音樂產業的面向,它已經難以被傳統的媒體取代,讓音樂人即時的去接觸這些在全球各個角落的潛在客戶,音樂產業可以使用社群媒體創造新的收益機會,因此如何去評估社群媒體的經營績效就是一個很重要的課題。以往社群網站相關的評估方法都是從指標的角度去衡量,無法告知管理者針對績效不佳的指標該如何進行改善及改善幅度多少,且針對流行音樂產業的社群媒體相關經營績效研究也不多。本研究將針對流行音樂產業的指標性人物,作為研究範圍,從效率的觀點去分析流行音樂產業之社群網站經營,採用資料包絡法(Data Envelopment Analysis , DEA) 分析其經營效率,使用三個產出變數和三個投入變數,其中所使用的投入變數為「發文數」、「媒體資料數」、「網站超連結數」;而產出變數為「粉絲按讚數」、「粉絲回應數」、「粉絲分享數」。研究結果發現, Rihanna生產效率值為1,達到規模報酬狀態,績效表現為最佳,其規模報酬維持固定,顯示其處於最適生產規模階段,被參考次數高達11次可以作為其他歌手的學習參考對象。經由差額變數分析可知每位歌手的資源配置與運用情形,未達相對有效率的歌手都有其改善的目標,由此可以檢視自身的投入、產出資源是否有資源過剩或不足的情形發生,並加以調整。在乘數分析與敏感度分析方面,不論是在 CCR模型或 BCC模型中,作為產出項的「粉絲分享數」對整體的經營績效的表現都最具有影響力,所以在經營管理上必須多加重視,在Malmquist生產力指數法方面,這些流行音樂指標人物的生產力在2013年呈現先成長再衰退,平均而言生產力是呈現正向成長,其中以Rihanna與Miley Cyrus的跨期效率表現最佳,可以作為其他歌手的參考對象。


    Nowadays music industry pays a lot more attention on social media channels, because social media have already changed the eco-system of music industry and they are difficult to be substituted by traditional media. Through the use of social media, artists can connect with their potential customers and create revenue stream with new channels. Accordingly, how to evaluate the performance of social media is an important issue for music industry. The assessment method of social media performance used to focus on indicators only. But it’s hard for managers to evaluate which performance indicator should be improved and the scale of improvements. Besides, there are not many researches focusing on the related issues from the perspective of pop music. Hence, this research aims to examine the performance of the top pop music artists on Facebook in 2013 from the view point of efficiency with the approach of data envelopment analysis. The input variables considered in this research include “the number of Posts”, “the number of Multimedia”, and “the number of Links”, while the output variables include “the number of Likes”, “the number of Replies” and “the number of Shares”. The result shows that Rihanna had the best productivity efficiency and reached a constant return to scale, which indicate that she had the optimal production scale. Through slack variable analysis, we can understand the resource allocation of each singer and find out where to improve for those inefficient singers. According to the finding of multiplier analysis and sensitivity analysis, the output variable “the number of Shares” is the most influential indicator to social media performance. As a result, managers should pay more attention on this variable. In addition, the results of Malmquist productivity index analysis indicate that the productivity curves of the sample pop artists increased in the beginning of 2013 and declined later in that year. Generally speaking, all of these artists’ Malmquist productivity indexes increased season by season in 2013. Rihanna and Miley Cyrus had the best intertemporal efficiency performances, which can be considered as the benchmarks to other artists.

    目錄 中文摘要 i ABSTRACT ii 誌謝 iii 表目錄 vi 圖目錄 vii 第一章 緒論 1 1.1研究背景與動機 1 1.2 研究目的 2 第二章 文獻探討 5 2.1音樂產業 5 2.2社群媒體與音樂產業 7 第三章 研究方法 10 3.1資料蒐集與變數說明 10 3.1.1 資料蒐集 10 3.1.2 變數說明 10 3.2 資料包絡分析法 13 3.2.1 CCR模型 14 3.2.2 BCC模型 15 3.2.3 Malmquist 生產力指數( Malmquist Productivity Index , MPI ) 17 第四章 研究結果與討論 19 4.1變數選取與資料來源 19 4.2 效率分析 20 4.3 CCR模型 23 4.4 BCC模型 27 4.5 Malmquist生產力分析 31 第五章 結論 35 5.1研究結論 35 5.2 研究限制及未來研究方向 38 參考資料 39

    Ali, A. I., & Lerme, C. S. (1997). Comparative advantage and disadvantage in DEA. Annals of Operations Research, 73, 215-232.
    Anderson, C. (2010). The Long Tail: How Endless Choice is Creating Unlimited Demand: Random House.
    Antin, J., & Earp, M. (2010). With a little help from my friends: Self‐interested and prosocial behavior on MySpace Music. Journal of the American Society for Information Science and Technology, 61(5), 952-963.
    Asur, S., & Huberman, B. A. (2010). Predicting the future with social media. Paper presented at the Web Intelligence and Intelligent Agent Technology (WI-IAT), 2010 IEEE/WIC/ACM International Conference on.
    Bagozzi, R. P., & Dholakia, U. M. (2002). Intentional social action in virtual communities. Journal of Interactive Marketing, 16(2), 2-21.
    Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078-1092.
    Berman, S. J., Battino, B., & Feldman, K. (2011). New business models for emerging media and entertainment revenue opportunities. Strategy and Leadership, 39(3), 44-53.
    Bhattacharjee, S., Gopal, R., Marsden, J. R., Sankaranarayanan, R., & Telang, R. (2009). To theme or not to theme: Can theme strength be the music industry's “killer app”? Decision Support Systems, 48(1), 141-149.
    Bickart, B., & Schindler, R. M. (2001). Internet forums as influential sources of consumer information. Journal of Interactive Marketing, 15(3), 31-40. doi: 10.1002/dir.1014
    (2013). British Recorded Music Industry [Retrieved from http://www.bpi.co.uk/default.aspx
    Caves, D. W., Christensen, L. R., & Diewert, W. E. (1982). The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica: Journal of the Econometric Society, 1393-1414.
    Chan Yun, Y. (2009). Effects beyond click-through: Incidental exposure to web advertising. Journal of Marketing Communications, 15(4), 227-246.
    Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444.
    Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research, 43(3), 345-354.
    Chintagunta, P. K., Gopinath, S., & Venkataraman, S. (2010). The Effects of Online User Reviews on Movie Box Office Performance: Accounting for Sequential Rollout and Aggregation Across Local Markets. Marketing Science, 29(5), 944-957.
    Coyle, J. R., & Thorson, E. (2001). The effects of progressive levels of interactivity and vividness in web marketing sites. Journal of Advertising, 30(3), 65-77.
    de Vries, L., Gensler, S., & Leeflang, P. S. H. (2012). Popularity of Brand Posts on Brand Fan Pages: An Investigation of the Effects of Social Media Marketing. Journal of Interactive Marketing, 26(2), 83-91. doi: 10.1016/j.intmar.2012.01.003
    Dholakia, U. M., Bagozzi, R. P., & Pearo, L. K. (2004). A social influence model of consumer participation in network- and small-group-based virtual communities. International Journal of Research in Marketing, 21(3), 241-263.
    Elberse, A. (2010). Bye-Bye Bundles: The Unbundling of Music in Digital Channels. Journal of Marketing, 74(3), 107-123.
    Färe, R., Grosskopf, S., Lindgren, B., & Roos, P. (1994). Productivity developments in Swedish hospitals: a Malmquist output index approach Data Envelopment Analysis: Theory, Methodology, and Applications (pp. 253-272): Springer.
    Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. The American Economic Review, 66-83.
    Facebook. (2013). Faccebook 2013 Annual Report.
    Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society. Series A (General), 253-290.
    Fortin, D. R., & Dholakia, R. R. (2005). Interactivity and vividness effects on social presence and involvement with a web-based advertisement. Journal of Business Research, 58(3), 387-396. doi: 10.1016/s0148-2963(03)00106-1
    Fox, M., & Wrenn, B. (2001). A broadcasting model for the music industry. International Journal on Media Management, 3(2), 112-119.
    Gensler, S., Volckner, F., Liu-Thompkins, Y., & Wiertz, C. (2013). Managing Brands in the Social Media Environment. Journal of Interactive Marketing, 27(4), 242-256.
    Goodrich, K. (2011). Anarchy of Effects? Exploring Attention to Online Advertising and Multiple Outcomes. Psychology & Marketing, 28(4), 417-440.
    Graham, G., Burnes, B., Lewis, G. J., & Langer, J. (2004). The transformation of the music industry supply chain - A major label perspective. International Journal of Operations & Production Management, 24(11-12), 1087-1103.
    Gruen, T. W., Osmonbekov, T., & Czaplewski, A. J. (2006). eWOM: The impact of customer-to-customer online know-how exchange on customer value and loyalty. Journal of Business Research, 59(4), 449-456. doi: 10.1016/j.busres.2005.10.004
    Hoffman, D. L., & Fodor, M. (2010). Can You Measure the ROI of Your Social Media Marketing? Mit Sloan Management Review, 52(1), 41-49.
    IFPI. (2014). IFPI Digital Music Report 2014.
    Kaplan, A. M., & Haenlein, M. (2012). The Britney Spears universe: Social media and viral marketing at its best. Business horizons, 55(1), 27-31.
    Kietzmann, J. H., Hermkens, K., McCarthy, I. P., & Silvestre, B. S. (2011). Social media? Get serious! Understanding the functional building blocks of social media. Business horizons, 54(3), 241-251.
    Larson, K., & Watson, R. T. (2011). The value of social media: toward measuring social media strategies. Paper presented at the Proceedings of ICIS.
    Mangold, W. G., & Faulds, D. J. (2009). Social media: The new hybrid element of the promotion mix. Business horizons, 52(4), 357-365.
    McAlexander, J. H., Schouten, J. W., & Koenig, H. F. (2002). Building brand community. Journal of Marketing, 66(1), 38-54.
    Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., & Bhattacharjee, B. (2007). Measurement and analysis of online social networks. Paper presented at the Proceedings of the 7th ACM SIGCOMM conference on Internet measurement.
    Muniz, A. M., & O'Guinn, T. C. (2001). Brand community. Journal of Consumer Research, 27(4), 412-432.
    Naylor, R. W., Lamberton, C. P., & West, P. M. (2012). Beyond the "Like" Button: The Impact of Mere Virtual Presence on Brand Evaluations and Purchase Intentions in Social Media Settings. Journal of Marketing, 76(6), 105-120.
    Norman, M., & Stoker, B. (1991). Data envelopment analysis: the assessment of performance: John Wiley & Sons, Inc.
    Oh, I., & Park, G.-S. (2012). From B2C to B2B: Selling Korean Pop Music in the Age of New Social Media. Korea Observer, 43(3), 365-397.
    Page, W., & Garland, E. (2009). The long tail of p2p. Economic Insight(14).
    Park, G. S. (2013). Manufacturing Creativity: Production, Performance, and Dissemination of K-pop. Korea Journal, 53(4), 14-33.
    RethinkMusic. (2013). New Business Models in the Music Industry.
    Schultz, D., Malthouse, E. C., & Pick, D. (2012). From CM to CRM to CN2: a research agenda for the marketing communications transition Advances in Advertising Research (Vol. III) (pp. 421-432): Springer.
    Simon, R. (2006). Social Broadcasting. Billboard, 118(38), 6-6.
    Smith, J. W., & Clurman, A. S. (2009). Generation ageless: HarperCollins.
    SocialMediaExaminer. (2013). 2013 Social Media Marketing Industry Report.
    Steuer, J. (1992). DEFINING VIRTUAL REALITY - DIMENSIONS DETERMINING TELEPRESENCE. Journal of Communication, 42(4), 73-93.

    QR CODE
    :::