跳到主要內容

簡易檢索 / 詳目顯示

研究生: 靳鴻楷
Horng-Kai Jing
論文名稱: 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
Research toward Durability and Rheology in Sealing Materials of Cement Grout for Radioactive Waste Repository
指導教授: 黃偉慶
Wei-Hsing Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 97
中文關鍵詞: 水泥薄漿矽灰爐石粉強塑劑放射性廢料
外文關鍵詞: cement grout, silica fume, slag, superplasticiz
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 本研究的目的在於探討薄漿拌和材料的各種性質,以及應如何使用矽灰或爐石粉添加材料,並配合強塑劑,製做出一種不泌水、流動性良好、工作性佳、具有高強度的薄漿材,可應用於細微裂縫的灌注填補,並能抵抗化學侵蝕,使放射性廢料深層處置場的安全性能獲得保障。
    研究結果顯示,就漿體的新拌、硬固或耐久性質而言,以矽灰取代水泥,必須適量,並同時應添加強塑劑以降低新拌漿體的黏滯度,改善其工作性;至於選擇以爐石取代水泥時,除了漿體的泌水情況須注意外,對漿體新拌與硬固性質而言,均較使用矽灰有較佳的成效。



    To produce a cement grout with no bleeding, high flowability, and considerable strength, laboratory tests are conducted on grout specimens prepared with various contents of silica fume, slag and superplasticizer. Results of these tests are used to evaluate advantages of using additives and superplasticizer. Based on the evaluation, criteria for the selection of potentially suitable formula for applications to the sealing of radioactive wastes can be developed.
    The results indicate that, as far as the fresh and hardened properties and durability are concerned, the use of silica fume in replacing cement in the grout needs to be limited to an amount of less than 5%. The use of silica fume must be accompanied by the addition of appropriate amount of superplasticizers, in order to lower the viscosity of fresh cement grout and to improve workability. The use of slag in the grout was found to show better performance than the use of silica fume, in terms of the fresh and hardened properties of the cement grout produced. However, extra care should be exercised in controlling the bleeding as slag is used in the cement grout.

    目錄 頁次 第一章 緒論--------------------------------------------------------------------1 1-1 研究動機-------------------------------------------------------------------1 1-2 研究目的-------------------------------------------------------------------1 1-3 研究內容-------------------------------------------------------------------2 第二章 文獻回顧--------------------------------------------------------------3 2-1 廢棄物處置場隔離壁----------------------------------------------------3 2-2 水泥薄漿隔離材料之種類----------------------------------------------8 2-2-1 水泥-------------------------------------------------------------------8 2-2-2 水----------------------------------------------------------------------8 2-2-3 卜作嵐材料----------------------------------------------------------9 2-2-4 強塑劑---------------------------------------------------------------12 2-3 新拌漿體性質-----------------------------------------------------------14 2-3-1 流變行為理論之解釋模式---------------------------------------14 2-3-2 黏滯度---------------------------------------------------------------16 2-3-3 遲滯現象------------------------------------------------------------17 2-3-4 流度值---------------------------------------------------------------18 2-3-5 初、終凝------------------------------------------------------------18 2-3-6 泌水------------------------------------------------------------------19 2-4 硬固漿體性質-----------------------------------------------------------20 2-4-1 抗壓強度-----------------------------------------------------------20 2-4-2 收縮變形------------------------------------------------------------21 2-4-3 滲透性---------------------------------------------------------------22 2-5 硫酸鹽侵蝕--------------------------------------------------------------24 2-5-1 硫酸鹽侵蝕的機理------------------------------------------------24 2-5-2 硫酸鎂特有的硫酸鹽侵蝕反應---------------------------------25 2-5-3 硫酸鎂侵蝕水泥漿體之反應機制------------------------------27 2-6 含矽灰或爐石的水泥薄漿抵抗硫酸鹽侵蝕之機理--------------30 2-6-1 添加爐石對水泥薄漿抗硫酸鹽侵蝕影響---------------------30 2-6-2 添加矽灰對水泥薄漿抗硫酸鹽侵蝕影響---------------------31 第三章 實驗計劃------------------------------------------------------------34 3-1 實驗材料-----------------------------------------------------------------34 3-2 主要實驗設備-----------------------------------------------------------37 3-3 實驗流程及方法--------------------------------------------------------41 3-3-1 實驗流程------------------------------------------------------------41 3-3-2 實驗方法------------------------------------------------------------43 3-3-2-1 新拌性質試驗------------------------------------------------43 3-3-2-2 硬固性質試驗------------------------------------------------45 第四章 結果與討論---------------------------------------------------------49 4-1 水泥薄漿新拌性質-----------------------------------------------------49 4-1-1 初、終凝時間-----------------------------------------------------49 4-1-2 泌水------------------------------------------------------------------53 4-1-3 漿體流變行為------------------------------------------------------55 4-1-3-1 黏滯度與時間延遲的關係---------------------------------55 4-1-3-2 黏滯度與水灰比及強塑劑使用量的關係---------------59 4-1-3-3 飽和點---------------------------------------------------------64 4-1-3-4 黏滯度及降伏應力------------------------------------------67 4-1-3-5 剪速率與剪應力關係---------------------------------------70 4-1-3-6 遲滯現象------------------------------------------------------71 4-2 水泥薄漿硬固性質-----------------------------------------------------73 4-2-1 抗壓強度------------------------------------------------------------73 4-2-2 長度變化------------------------------------------------------------85 4-2-3 壓汞式灌入試驗(MIP) ------------------------------------------91 4-2-4 X光繞射分析(XRD)---------------------------------------------102 第五章 結論與建議--------------------------------------------------------105 5-1 結論----------------------------------------------------------------------105 5-2 建議----------------------------------------------------------------------106 參考文獻------------------------------------------------------------------------108 附錄 附錄(一)---------------------------------------------------------------------113 附錄(二)---------------------------------------------------------------------117 附錄(三)---------------------------------------------------------------------121 附錄(四)---------------------------------------------------------------------127 附錄(五)---------------------------------------------------------------------131 附錄(六)---------------------------------------------------------------------135 附錄(七)---------------------------------------------------------------------141 附錄(八)---------------------------------------------------------------------147 附錄(九)---------------------------------------------------------------------153 圖目錄 頁次 圖2-1 水泥薄漿在基礎補強上之應用------------------------------------1 圖2-2 薄漿在止水牆或掩埋場隔離壁的應用-----------------------------6 圖2-3 放射性廢棄物處置場示意圖-----------------------------------------7 圖2-4 牛頓流體---------------------------------------------------------------15 圖2-5 假凝塑性流體-----------------------------------------------------------15 圖2-6 賓漢塑性體--------------------------------------------------------------15 圖2-7 硫酸鎂侵蝕水泥薄漿示意圖-----------------------------------------29 圖3-1 薄漿拌和機-------------------------------------------------------------37 圖3-2 萬能試驗機--------------------------------------------------------------38 圖3-3 雙軸黏滯度儀-----------------------------------------------------------38 圖3-4 壓汞式孔隙分析儀(MIP)-----------------------------------------39 圖3-5 X光繞射分析儀(XRD)------------------------------------------40 圖3-6 數位式比長計-----------------------------------------------------------40 圖3-7 試驗流程-----------------------------------------------------------------42 圖4-1 矽灰及強塑劑含量與初凝時間的關係-----------------------------51 圖4-2 矽灰及強塑劑含量與終凝時間的關係-----------------------------51 圖4-3 爐石含量與初凝時間的關係-----------------------------------------52 圖4-4 爐石含量與終凝時間的關係-----------------------------------------52 圖4-5 矽灰及強塑劑含量與泌水程度的關係-----------------------------54 圖4-6 爐石含量與泌水程度的關係----------------------------------------54 圖4-7不同強塑劑含量的純水泥漿之黏滯度與時間關係圖----------57 圖4-8不同強塑劑含量下,5%矽灰添加量的水泥漿之黏滯度與時間 關係圖-----------------------------------------------------------------------------57 圖4-9 不同強塑劑含量下,10%矽灰添加量的水泥漿之黏滯度與時間關係圖-----------------------------------------------------------------------------58 圖4-10 不添加強塑劑下,不同爐石含量的水泥漿之黏滯度與時間關係圖--------------------------------------------------------------------------------58 圖4-11 5%矽灰漿體的水灰比與黏滯度關係圖-------------------------60 圖4-12 5%矽灰漿體的強塑劑使用量與黏滯度關係圖----------------61 圖4-13 10%矽灰漿體的水灰比與黏滯度關係圖-----------------------61 圖4-14 10%矽灰漿體的強塑劑使用量與黏滯度關係圖--------------62 圖4-15 含爐石漿體的水灰比與黏滯度關係圖--------------------------62 圖4-16 純水泥漿體的水灰比與黏滯度關係圖--------------------------63 圖4-17 純水泥漿體的強塑劑使用量與黏滯度關係圖-----------------63 圖4-18 水灰比0.3時,含矽灰漿體之強塑劑使用量與黏滯度關係圖 --------------------------------------------------------------------------65 圖4-19 水灰比0.4時,含矽灰漿體之強塑劑使用量與黏滯度關係圖 --------------------------------------------------------------------------65 圖4-20 水灰比0.5時,含矽灰漿體之強塑劑使用量與黏滯度關係圖 --------------------------------------------------------------------------66 圖4-21 水灰比0.6時,含矽灰漿體之強塑劑使用量與黏滯度關係圖 --------------------------------------------------------------------------66 圖4-22 正常濕養治下,含5%矽灰漿體的抗壓強度發展情況-------74 圖4-23 正常濕養治下,含10%矽灰漿體的抗壓強度發展情況------74 圖4-24 正常濕養治下,純水泥漿體的抗壓強度發展情況------------75 圖4-25 正常濕養治下,在強塑劑使用量為0%,不同矽灰含量的漿體抗壓強度之發展情況--------------------------------------------------------76 圖4-26 正常濕養治下,在強塑劑使用量為1%,不同矽灰含量的漿體抗壓強度之發展情況--------------------------------------------------------77 圖4-27 正常濕養治下,在強塑劑使用量為2%,不同矽灰含量的漿體抗壓強度之發展情況--------------------------------------------------------77 圖4-28 正常濕養治下,在強塑劑使用量為0%,不同爐石含量的漿體抗壓強度之發展情況--------------------------------------------------------78 圖4-29 含矽灰的硬固漿體受MgSO4侵蝕後抗壓強度變化(SP=0%) --------------------------------------------------------------------------80 圖4-30 含矽灰的硬固漿體受MgSO4侵蝕後抗壓強度變化(SP=2%) --------------------------------------------------------------------------81 圖4-31 含爐石的硬固漿體受MgSO4侵蝕後抗壓強度變化(SP=0%) --------------------------------------------------------------------------81 圖4-32 含矽灰的硬固漿體受MgSO4侵蝕後抗壓強度損失(SP=0%) --------------------------------------------------------------------------83 圖4-33 含矽灰的硬固漿體受MgSO4侵蝕後抗壓強度損失(SP=2%) --------------------------------------------------------------------------83 圖4-34 含矽灰的硬固漿體受MgSO4侵蝕後抗壓強度損失(SP=0%) --------------------------------------------------------------------------84 圖4-35 含矽灰的硬固漿體於正常濕養治下的伸長率(SP=0%)---86 圖4-36 含矽灰的硬固漿體於正常濕養治下的伸長率(SP=2%)---86 圖4-37 含爐石的硬固漿體於正常濕養治下的伸長率(SP=0%)---87 圖4-38 含矽灰的硬固漿體受MgSO4侵蝕後的伸長率(SP=0%)--87 圖4-39 含矽灰的硬固漿體受MgSO4侵蝕後的伸長率(SP=2%)--88 圖4-40 含爐石的硬固漿體受MgSO4侵蝕後的伸長率(SP=0%)--88 圖4-41 含矽灰的硬固漿體受MgSO4侵蝕後的伸長率增加量(SP=0%) -------------------------------------------------------------89 圖4-42 含矽灰的硬固漿體受MgSO4侵蝕後的伸長率增加量(SP=2%) ---------------------------------------------------------------------------89 圖4-43 含爐石的硬固漿體受MgSO4侵蝕後的伸長率增加量(SP=0%) ---------------------------------------------------------------------------90 圖4-44 添加矽灰水泥漿體,於濕養治90天後之累積灌入體積(SP=0%)------------------------------------------------------------------------98 圖4-45 添加矽灰水泥漿體,於濕養治90天後之累積灌入體積(SP=2%)------------------------------------------------------------------------98 圖4-46 添加爐石水泥漿體,於濕養治90天後之累積灌入體積(SP=0%)------------------------------------------------------------------------99 圖4-47 添加矽灰水泥漿體,浸泡在硫酸鎂溶液中90天後之累積灌入 體積(SP=0%)------------------------------------------------------------------99 圖4-48 添加矽灰水泥漿體,浸泡在硫酸鎂溶液中90天後之累積灌入 體積(SP=2%)------------------------------------------------------------------100 圖4-49 添加爐石水泥漿體,浸泡在硫酸鎂溶液中90天後之累積灌入 體積(SP=0%)------------------------------------------------------------------100 圖4-50 添加矽灰漿體,浸泡在硫酸鎂90天後大於0.025μm之孔隙率與膨脹量關係圖------------------------------------------------------------101 圖4-51 添加爐石漿體,浸泡在硫酸鎂90天後大於0.025μm之孔隙率與膨脹量關係圖------------------------------------------------------------101 圖4-52 各水泥薄漿配比於正常濕養治90天後的XRD分析-------103 圖4-53 各水泥薄漿配比浸泡在硫鎂溶液中90天後的XRD分析---104 表目錄 頁次 表3-1 水泥的基本性質及組成--------------------------------------34 表3-2 爐石的基本性質及組成---------------------------------------------35 表3-3 矽灰的基本性質及組成---------------------------------------------36 表4-1 漿體水灰比為0.3時,含矽灰配比的黏滯度與降伏應力----68 表4-2 漿體水灰比為0.4時,含矽灰配比的黏滯度與降伏應力----68 表4-3 漿體水灰比為0.5時,含矽灰配比的黏滯度與降伏應力----68 表4-4 漿體水灰比為0.6時,含矽灰配比的黏滯度與降伏應力----69 表4-5 不添加強塑劑含爐石配比的黏滯度與降伏應力---------------69 表4-6 矽灰配比在正常濕養治及硫酸鎂溶液中的孔隙分布(SP=0%) ---------------------------------------------------------------------------95 表4-7 矽灰配比在正常濕養治及硫酸鎂溶液中的孔隙分布(SP=2%) ---------------------------------------------------------------------------95 表4-8 爐石配比在正常濕養治及硫酸鎂溶液中的孔隙分布(SP=0%) ---------------------------------------------------------------------------96 表4-9 含矽灰漿體的門檻孔徑與墨水瓶孔隙之分析(SP=0%)----96 表4-10 含矽灰漿體的門檻孔徑與墨水瓶孔隙之分析(SP=2%)----97 表4-11 含爐石漿體的門檻孔徑與墨水瓶孔隙之分析(SP=2%)----97

    1. 蔡嘉一,「有害廢棄物管理與減廢概論」,歐亞書局有限公司,臺北市,(1992)。
    2. 黃偉慶、高興秋、曾慶川、張維仁,「有害廢棄物薄漿絕緣壁之耐久性研究」,行政院國家科學委原會專題研究計劃成果報告,國立中央大學土木工程研究所,(1993)。
    3. Tashiro, Shingo, Fujiwara, Senoo and Muneaki, “Study on Permeability of Engineered Barriers for The Enhancement of a Radioactive Waste Reposity System,” Nuclear Technology, Vol. 121, No. 1, pp.14-23 (1998).
    4. 黃偉慶,「以流動劑改善安全掩埋場薄漿隔離層工程特性之研究」,行政院國家科學委員會專題研究計畫成果報告,(1995)。
    5. Al-Manaseer, A. A., and Keil, L. D.,“Physical Properties of Cement Grout Containing Silica Fume and Superplasticizer,”ACI Materials Journal, Vol. 89, No. 2, pp. 154-160 (1992).
    6. Abu-Tair, A. I., Rigden, S. R., and Burley, E., “Testing the Bond between Repair Materials and Concrete Substrate,” ACI Materials Journal, Vol. 93, No. 6, pp. 553-558 (1996).
    7. Mindess, S., and Young, J. F., Concrete, Prentice-Hall, Inc., Englewood Cliffs, NJ. (1981).
    8. Mehta, P. K., Concrete Structure, Properties, and Materials, Prentice-Hall, Inc., Englewood Cliffs, NJ. (1986).
    9. Gollop, R. S., and Taylor, H. F. W., “Microstructural and Microanalytical Studies of Sulfate Attack Ⅰ. Ordinary Portland Cement Paste,” Cement and Concrete Research, Vol. 22, pp. 1027-1038 (1992).
    10. Hooten, R. D., and Emery, J. J., “Sulfate Resistence of a Canadian Slag Cement,” ACI Materials Journal, Vol. 87, No. 6, pp. 547-555 (1990).
    11. Cohen, M. D., and Bentur, A., “Durability of Portland Cement-Silica Fume Paste in Magnesium Sulfate and Sodium Sulfate Solutions,” ACI Materials Journal, Vol. 85, pp. 148-157 (1988).
    12. ACI Committee 234“Guide for The Use of Silica Fume in Concrete,”ACI Materials Journal, Vol. 92, No. 4, pp. 437-440(1995).
    1. Cohen, M. D., and Olek, J., “Silica Fume in PCC︰The Effects of Form on Engineering Performance,” Concrete International, November, pp. 43-47 (1989).
    14. 陳忠元,「強塑劑對水泥添加波蜀蘭材料之早期行為影響」,碩士論文,國立中央大學土木工程研究所,中壢 (1998)。
    15. 王檻勝,「水泥性質對強塑劑使用成效影響之研究」,碩士論文,國立中央大學土木工程研究所,中壢 (1994)。
    16. Allan, M. L., and Kukacka, L. E.,“Comparison Between Slag-Modified And Silica Fume-Modified Grouts,” ACI Materials Journal , Vol. 93, No. 6, pp.559-568 (1996).
    17. Gray, M. N., and Keil, L. D., “Field Trials of Superplasticial Grout at AECL’s Underground Research Laboratory,” Superplasticizers and Other Chemical Admixtures in Concrete, SP-119, American Concrete Institure, Detroit, pp. 605-624 (1989).
    18. Ramachandran, V. S., and Malhotra, V. M., “Superplasticizers,” Concrete Admixtures Handbook, V. S. Ramachandran, ed., Noyes Publications, Park Ridge, pp. 211-268 (1984).
    19. Hiroshi Uchikawa, Daisuke Sawaki and Shunsuke Hanehara, ”Influence of Kind and Added Timing of Organic Admixture on The Composition, Structure and Property of Fresh Cement Paste,” Cement and Concrete Research, Vol. 25, No. 2, pp. 353-364 (1995).
    20. Toumbakari, E. E., Van Gemert, D., Tassios, T.P., and Tenoutasse, N., “Effect of mixing procedure on injectability of cementitious grouts,” Cement and Concrete Research, Vol.29, pp. 867-872 (1999).
    21. P. Frantzis and R. Baggott, “Effect of Vibration on The Rheological Characteristics of Magnesia Phosphate and Ordinary Portland Cement Slurries,” Cement and Concrete Research, Vol. 26, No. 3, pp. 387-395 (1996).
    22. Wu, X., Jiang, W., and Roy, D. M., “Early Activation and Properties of Slag Cement,” Cement and Concrete Research, Vol. 20, No. 6, pp. 961-974 (1990).
    23. Nishikawa, T., and Takatsu, M., “Fracture Behavior of Cement Paste Incorporating Mineral Additions,” Cement and Concrete Research, Vol. 25, No. 6, pp. 1218-1224 (1995).
    24. Ei-ichi Tazawa and Shingo Miyazawa, “Influence of Cement and Admixture on Autogenous Shrinkage of Cement Paste,” Cement and Concrete Research, Vol. 25, No. 2, pp. 281-287 (1995).
    25. Rudolph, Andrew Olson Ⅲ., “The Microstructure of Portland Cement Paste and Its Relationship to Drying Shrinkage: A Study of Blended Cement Paste,” Ph.D. Dissertation, Field of Materials Science and Engineering, Northwestern University, Evanston Illinois (1998).
    26. Rao, G.A., “Influence of Silica Fume Replacement of Cement on Expansion and Drying Shrinkage,” Cement and Concrete Research, Vol. 28, No. 10, pp. 1505-1509 (1998).
    27. Bodocsi, A. and M. T. Bowers, “Permeability of Acrylate, Urethane, and Silicate Grouted Sands with Chemicals,” Journal of Geotechnical Engineering, Vol. 117, No. 8, pp.1227-1244 (1991).
    28. Ran, C., and J. J. K. Daemen, “Effectiveness of Fracture Sealing with Bentonite Grouting,” Nuclear Regulatory Commission, Washington, DC (1991).
    29. D.C. Hughes, “Pore Structure and Permeability of Hardened Cement Paste,” Magazine of Concrete Research, Vol. 37, No.133, pp.227-233 (1985).
    30. J.M. Khatib and P.S. Mangat, “Influence of Superplasticizer and Curing on Porosity and Pore Structure of Cement Paste,” Cement and Concrete Research, Vol. 21, pp.431-437 (1999).
    31. Bonen, D., and Cohen, M. D., “Magnesium Sulfate Attack on Portland Cement Paste I. Microstructural Analysis,”Cement and Concrete Research, Vol. 22, pp. 169-180 (1992).
    32. Bonen, D., and Cohen, M. D., “Magnesium Sulfate Attack on Portland Cement Paste II. Chemical and Mineralogical Analysis,”Cement and Concrete Research, Vol. 22, pp. 707-718 (1992).
    1. 邵錡鼎,「含矽灰及強塑劑水泥薄漿之工程性質研究」,碩士論文,國立中央大學土木工程研究所,中壢 (1998)。
    34. Al-Amoudi, O. S. B., Maslehuddin, M., and Saddi, M. M., “Effect of Magnesium Sulfate and Sodium Sulfate on the Durability Performance of Plain and Blended Cements,” ACI Materials Journal, Vol. 92, No.1, pp. 15-24 (1995).
    35. 潘致遠,「添加矽灰與爐石對水泥薄漿工程性質之影響研究」,碩士論文,國立中央大學土木工程研究所,中壢 (1999)。
    36. Hooton, R.D., “Influence of Silica Fume Replacement of Cement on Physical Properties and Resistance to Sulfate Attack, Freezing and Thawing, and Alkali-Silica Reactivity,”ACI Materials Journal, Vol. 90, No. 15, pp. 143-151 (1993).
    37. Hill, R.D., “An Improved Method of Interpreting Mercury Penetration Data,” Transection British Ceramics Society, Vol. 59, pp. 198-212 (1960).
    38. Richardson, I.G., “The Nature of The Hydration Products in Hardened Cement Pastes,” Cement and Concrete Composites, Vol. 22, pp. 97-113 (2000).

    QR CODE
    :::