| 研究生: |
靳鴻楷 Horng-Kai Jing |
|---|---|
| 論文名稱: |
放射性廢料深層處置場填封用薄漿之流變性與耐久性研究 Research toward Durability and Rheology in Sealing Materials of Cement Grout for Radioactive Waste Repository |
| 指導教授: |
黃偉慶
Wei-Hsing Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 水泥薄漿 、矽灰 、爐石粉 、強塑劑 、放射性廢料 |
| 外文關鍵詞: | cement grout, silica fume, slag, superplasticiz |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的在於探討薄漿拌和材料的各種性質,以及應如何使用矽灰或爐石粉添加材料,並配合強塑劑,製做出一種不泌水、流動性良好、工作性佳、具有高強度的薄漿材,可應用於細微裂縫的灌注填補,並能抵抗化學侵蝕,使放射性廢料深層處置場的安全性能獲得保障。
研究結果顯示,就漿體的新拌、硬固或耐久性質而言,以矽灰取代水泥,必須適量,並同時應添加強塑劑以降低新拌漿體的黏滯度,改善其工作性;至於選擇以爐石取代水泥時,除了漿體的泌水情況須注意外,對漿體新拌與硬固性質而言,均較使用矽灰有較佳的成效。
To produce a cement grout with no bleeding, high flowability, and considerable strength, laboratory tests are conducted on grout specimens prepared with various contents of silica fume, slag and superplasticizer. Results of these tests are used to evaluate advantages of using additives and superplasticizer. Based on the evaluation, criteria for the selection of potentially suitable formula for applications to the sealing of radioactive wastes can be developed.
The results indicate that, as far as the fresh and hardened properties and durability are concerned, the use of silica fume in replacing cement in the grout needs to be limited to an amount of less than 5%. The use of silica fume must be accompanied by the addition of appropriate amount of superplasticizers, in order to lower the viscosity of fresh cement grout and to improve workability. The use of slag in the grout was found to show better performance than the use of silica fume, in terms of the fresh and hardened properties of the cement grout produced. However, extra care should be exercised in controlling the bleeding as slag is used in the cement grout.
1. 蔡嘉一,「有害廢棄物管理與減廢概論」,歐亞書局有限公司,臺北市,(1992)。
2. 黃偉慶、高興秋、曾慶川、張維仁,「有害廢棄物薄漿絕緣壁之耐久性研究」,行政院國家科學委原會專題研究計劃成果報告,國立中央大學土木工程研究所,(1993)。
3. Tashiro, Shingo, Fujiwara, Senoo and Muneaki, “Study on Permeability of Engineered Barriers for The Enhancement of a Radioactive Waste Reposity System,” Nuclear Technology, Vol. 121, No. 1, pp.14-23 (1998).
4. 黃偉慶,「以流動劑改善安全掩埋場薄漿隔離層工程特性之研究」,行政院國家科學委員會專題研究計畫成果報告,(1995)。
5. Al-Manaseer, A. A., and Keil, L. D.,“Physical Properties of Cement Grout Containing Silica Fume and Superplasticizer,”ACI Materials Journal, Vol. 89, No. 2, pp. 154-160 (1992).
6. Abu-Tair, A. I., Rigden, S. R., and Burley, E., “Testing the Bond between Repair Materials and Concrete Substrate,” ACI Materials Journal, Vol. 93, No. 6, pp. 553-558 (1996).
7. Mindess, S., and Young, J. F., Concrete, Prentice-Hall, Inc., Englewood Cliffs, NJ. (1981).
8. Mehta, P. K., Concrete Structure, Properties, and Materials, Prentice-Hall, Inc., Englewood Cliffs, NJ. (1986).
9. Gollop, R. S., and Taylor, H. F. W., “Microstructural and Microanalytical Studies of Sulfate Attack Ⅰ. Ordinary Portland Cement Paste,” Cement and Concrete Research, Vol. 22, pp. 1027-1038 (1992).
10. Hooten, R. D., and Emery, J. J., “Sulfate Resistence of a Canadian Slag Cement,” ACI Materials Journal, Vol. 87, No. 6, pp. 547-555 (1990).
11. Cohen, M. D., and Bentur, A., “Durability of Portland Cement-Silica Fume Paste in Magnesium Sulfate and Sodium Sulfate Solutions,” ACI Materials Journal, Vol. 85, pp. 148-157 (1988).
12. ACI Committee 234“Guide for The Use of Silica Fume in Concrete,”ACI Materials Journal, Vol. 92, No. 4, pp. 437-440(1995).
1. Cohen, M. D., and Olek, J., “Silica Fume in PCC︰The Effects of Form on Engineering Performance,” Concrete International, November, pp. 43-47 (1989).
14. 陳忠元,「強塑劑對水泥添加波蜀蘭材料之早期行為影響」,碩士論文,國立中央大學土木工程研究所,中壢 (1998)。
15. 王檻勝,「水泥性質對強塑劑使用成效影響之研究」,碩士論文,國立中央大學土木工程研究所,中壢 (1994)。
16. Allan, M. L., and Kukacka, L. E.,“Comparison Between Slag-Modified And Silica Fume-Modified Grouts,” ACI Materials Journal , Vol. 93, No. 6, pp.559-568 (1996).
17. Gray, M. N., and Keil, L. D., “Field Trials of Superplasticial Grout at AECL’s Underground Research Laboratory,” Superplasticizers and Other Chemical Admixtures in Concrete, SP-119, American Concrete Institure, Detroit, pp. 605-624 (1989).
18. Ramachandran, V. S., and Malhotra, V. M., “Superplasticizers,” Concrete Admixtures Handbook, V. S. Ramachandran, ed., Noyes Publications, Park Ridge, pp. 211-268 (1984).
19. Hiroshi Uchikawa, Daisuke Sawaki and Shunsuke Hanehara, ”Influence of Kind and Added Timing of Organic Admixture on The Composition, Structure and Property of Fresh Cement Paste,” Cement and Concrete Research, Vol. 25, No. 2, pp. 353-364 (1995).
20. Toumbakari, E. E., Van Gemert, D., Tassios, T.P., and Tenoutasse, N., “Effect of mixing procedure on injectability of cementitious grouts,” Cement and Concrete Research, Vol.29, pp. 867-872 (1999).
21. P. Frantzis and R. Baggott, “Effect of Vibration on The Rheological Characteristics of Magnesia Phosphate and Ordinary Portland Cement Slurries,” Cement and Concrete Research, Vol. 26, No. 3, pp. 387-395 (1996).
22. Wu, X., Jiang, W., and Roy, D. M., “Early Activation and Properties of Slag Cement,” Cement and Concrete Research, Vol. 20, No. 6, pp. 961-974 (1990).
23. Nishikawa, T., and Takatsu, M., “Fracture Behavior of Cement Paste Incorporating Mineral Additions,” Cement and Concrete Research, Vol. 25, No. 6, pp. 1218-1224 (1995).
24. Ei-ichi Tazawa and Shingo Miyazawa, “Influence of Cement and Admixture on Autogenous Shrinkage of Cement Paste,” Cement and Concrete Research, Vol. 25, No. 2, pp. 281-287 (1995).
25. Rudolph, Andrew Olson Ⅲ., “The Microstructure of Portland Cement Paste and Its Relationship to Drying Shrinkage: A Study of Blended Cement Paste,” Ph.D. Dissertation, Field of Materials Science and Engineering, Northwestern University, Evanston Illinois (1998).
26. Rao, G.A., “Influence of Silica Fume Replacement of Cement on Expansion and Drying Shrinkage,” Cement and Concrete Research, Vol. 28, No. 10, pp. 1505-1509 (1998).
27. Bodocsi, A. and M. T. Bowers, “Permeability of Acrylate, Urethane, and Silicate Grouted Sands with Chemicals,” Journal of Geotechnical Engineering, Vol. 117, No. 8, pp.1227-1244 (1991).
28. Ran, C., and J. J. K. Daemen, “Effectiveness of Fracture Sealing with Bentonite Grouting,” Nuclear Regulatory Commission, Washington, DC (1991).
29. D.C. Hughes, “Pore Structure and Permeability of Hardened Cement Paste,” Magazine of Concrete Research, Vol. 37, No.133, pp.227-233 (1985).
30. J.M. Khatib and P.S. Mangat, “Influence of Superplasticizer and Curing on Porosity and Pore Structure of Cement Paste,” Cement and Concrete Research, Vol. 21, pp.431-437 (1999).
31. Bonen, D., and Cohen, M. D., “Magnesium Sulfate Attack on Portland Cement Paste I. Microstructural Analysis,”Cement and Concrete Research, Vol. 22, pp. 169-180 (1992).
32. Bonen, D., and Cohen, M. D., “Magnesium Sulfate Attack on Portland Cement Paste II. Chemical and Mineralogical Analysis,”Cement and Concrete Research, Vol. 22, pp. 707-718 (1992).
1. 邵錡鼎,「含矽灰及強塑劑水泥薄漿之工程性質研究」,碩士論文,國立中央大學土木工程研究所,中壢 (1998)。
34. Al-Amoudi, O. S. B., Maslehuddin, M., and Saddi, M. M., “Effect of Magnesium Sulfate and Sodium Sulfate on the Durability Performance of Plain and Blended Cements,” ACI Materials Journal, Vol. 92, No.1, pp. 15-24 (1995).
35. 潘致遠,「添加矽灰與爐石對水泥薄漿工程性質之影響研究」,碩士論文,國立中央大學土木工程研究所,中壢 (1999)。
36. Hooton, R.D., “Influence of Silica Fume Replacement of Cement on Physical Properties and Resistance to Sulfate Attack, Freezing and Thawing, and Alkali-Silica Reactivity,”ACI Materials Journal, Vol. 90, No. 15, pp. 143-151 (1993).
37. Hill, R.D., “An Improved Method of Interpreting Mercury Penetration Data,” Transection British Ceramics Society, Vol. 59, pp. 198-212 (1960).
38. Richardson, I.G., “The Nature of The Hydration Products in Hardened Cement Pastes,” Cement and Concrete Composites, Vol. 22, pp. 97-113 (2000).