| 研究生: |
成嘉偉 Chai Wei |
|---|---|
| 論文名稱: |
高鋁與鈧元素添加對於鎂鋰合金機械性質與微結構之影響 Effects of High Aluminum and Scandium Additions on the Mechanical Behaviors and Microstructures of Magnesium Lithium Alloys |
| 指導教授: |
李雄
Shyong Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 機械性質 、微結構 、鎂鋰合金 |
| 外文關鍵詞: | Mg-Li Alloy, Microstructure, Mechanical behavior |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對高鋁與鈧含量之LAZ1151與LAZ11101鎂鋰合金進行探討。結果顯示鋁元素的添加有助於提升合金之最大抗拉強度,但也會大幅降低合金之延展性;鈧的添加對於鑄造材有顯著細化晶粒的效果。同時鋁與鈧的添加會促使θ相與α相的析出。
本研究對兩種合金鑄造材進行三和六個月的自然時效觀察結果發現有典型室溫軟化現象,歸咎於β相基材的晶粒成長以及α相的析出;θ相與AlLi相在鑄造材中並未顯現強化的效果。
本研究嘗試利用30%、60%和90%冷輥軋之方法改善合金之強度,LAZ1151與LAZ11101經90%輥軋後強度提升至180 MPa與209 MPa。LAZ11101加工硬化效果較LAZ1151高,可能是由於較高鋁與鈧元素的添加。合金經90%輥軋後室溫軟化的程度較未輥軋之試片緩和,但冷輥軋不能完全抑止合金之α相在室溫下的析出。
本實驗將兩種合金做430℃、1小時之固溶處理後進行自然時效觀察,實驗顯示高鋁與鈧的添加會促使θ相與α相加速析出;析出硬化歸功於θ相的析出,LAZ1151在時效3小時後即到達尖峰時效,LAZ11101則因未固溶成單一過飽和β相而使尖峰時效延遲至12小時。兩種鎂鋰合金固溶處理後,硬度值約為90%輥軋後的兩倍,固溶強化效果遠大於加工硬化效果,此現象歸功於高鋁元素的添加。
The effects of high aluminum (Al) and scandium (Sc) additions on magnesium-lithium alloys were investigated. The alloys of interest are LAZ1151 and LAZ11101. Results indicated that high Al additions could increase the alloys’ strength but also greatly reduced the alloys’ ductility. Adding Sc to the casted alloys had obvious grain refining effects. High Al and Sc additions also increased θ and α phase precipitations.
Three and six month natural aging of the casted alloys had been carried out. Room temperature softening phenomenon had been observed, which was probably due to grain growth of the β phase matrix and α phase precipitations. θ phase and AlLi phase showed no strengthening effects on the alloys.
30%, 60% and 90% cold rolling were tried in hopes of improving the alloys’ strength. The tensile strength of LAZ1151 and LAZ11101 increased to a value of 180 MPa and 209 MPa, respectively after 90% cold rolling. Strain hardening effects was higher for LAZ11101 probably because of its higher Al and Sc contents. In addition, 90% cold rolling couldn’t completely impede α phase precipitations under room temperature.
The alloys were solid solution treated at 430℃ for 1 hr and then aged under room temperature. Precipitation hardening was mainly due to the precipitation of θ phase. Results showed that high Al and Sc additions could accelerate θ phase and α phase precipitations. LAZ1151 reached peak aging in merely 3 hrs while LAZ11101 delayed till 12 hrs probably due to its deficient solid solubility. The hardness of the solution treated specimens increased nearly two times compared to the cold rolled specimens; showing that solid solution strengthening was much more effective than strain hardening strengthening, which was also a result of high Al additions.
1. 曾婉如,「2010年8月~2010年10月全球鎂合金產業動態報導」,鎂合金產業通訊,第12卷第4期, 9-20頁,台灣鎂合金協會,民國99年11月。
2. H. Takuda, T. Yoshii and N. Hatta, “Finite-element analysis of the formability of a magnesium-based alloy AZ31 sheet”, Journal of Materials Processing Technology, Vol. 89-90, pp. 135-140, May.1999.
3. B. Smola, I. Stul?kov?, V. Očen?šek, J. Pelcov? and V. Neubert, “Annealing effects in Al–Sc alloys”, Materials Science and Engineering: A, Vol. 462, pp. 370-374, 2007.
4. 王建義,「輕量鎂合金開發」,工業材料雜誌,第184期,132-136頁,民國91年4月。
5. T. C. Chang, J. Y. Wang, C. L. Chu and S. Lee, “Mechanical Properties and Microstructures of Various Mg-Li Alloys”, Materials Letters, Vol. 60(27), pp. 3272-3276, Nov.2006.
6. H. Dong, L. Wang, Y. Wu and L. Wang, “Effect of Y on microstructure and mechanical properties of duplex Mg-7Li alloys”, Journal of Alloys and Compounds, Vol. 506(1), pp. 468-474, Sep.2010.
7. H. Ji, G. Yao and H. Li, “Microstructure, cold rolling, heat treatment, and mechanical properties of Mg-Li alloys”, Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, Vol. 15(4), pp. 440-443, Aug.2008.
8. T. Wang, M. Zhang and R. Wu, “Microstructure and properties of Mg-8Li-1Al-1Ce alloy”, Materials Letters, Vol. 62(12-13), pp. 1846-1848, Apr.2008.
9. B. Jiang, D. Qiu, M.-X. Zhang, P.D. Ding, L. Gao, “A new approach to grain refinement of an Mg–Li–Al cast alloy”, Journal of Alloys and Compounds, Vol. 492(1-2), pp. 95-98, Mar.2010.
10. C.T Chiang, S. Lee and C.L Chu, “Rolling route for refining grains of super light Mg-Li alloys containing Sc and Be”, Transactions of Nonferrous Metals Society of China, Vol. 20(8), pp. 1374-1379, Aug.2010.
11. T. Liu, S.D. Wu, S.X. Li and P.J. Li, “Microstructure evolution of Mg–14% Li–1% Al alloy during the process of equal channel angular pressing”, Materials Science and Engineering: A, Vol. 460-461, pp. 499-503, Jul.2007.
12. M.M. Avedesian and H. Baker (Eds), ASM Specialty Handbook - Magnesium and Magnesium Alloys, pp. 3-51, ASM International, 1999.
13. 邱垂泓,楊智超,「鎂合金成型技術之發展趨勢」,工業材料雜誌,第174期,84-88頁,民國90年6月。
14. 蔡幸甫,「輕金屬產業發展現況及趨勢」,工業材料雜誌,第198期,72-80頁,民國92年6月。
15. 林英男,「鎂合金固相回收及熱機處理研究」,國立中央大學,博士論文,民國98年。
16. J.M. Song, T.X. Wen, J.Y. Wang, “Vibration fracture properties of a lightweight Mg–Li–Zn alloy”, Scripta Materialia, Vol. 56(6), pp. 529-532, Mar.2007.
17. 郭子強,「熱處理對AZ91D鎂合金顯微組織與電化學性質影響之研究」, 國立成功大學,碩士論文,民國93年。
18. 黃繼遠,莫文偉,鄭銘章,「隱形殺手電磁波 vs. 殺手剋星電磁波遮蔽材」,科學發展,第362期,18-21頁,2003年2月。
19. S.F. Sibley, W.C. Butterman and Staff, “Metals recycling in the United States”, Resources, Conservation and Recycling, Vol. 15(3-4), pp. 259-267, Dec.1995.
20. A. Ditze and K. Kongolo, “Recovery of scandium from magnesium, aluminium and iron scrap”, Hydrometallurgy, Vol. 44(1-2), pp. 179-184, 1997.
21. B.L. Mordike and K.U. Kainer (Eds), Magnesium Alloys and their Applications, Werkstoff-Informationsgesellschaft mbH, Hamburger, 1998.
22. R.W. Cahn, P. Haasen, E.J. Kramer and K.H. Matucha (Eds), Materials Science and Technology A Comprehensive Treatment “Structure and Properties of Nonferrous Alloys”, Vol. 8, pp. 117-212, VCH Verlagsgesellschaft mbH, Weinheim, 1996.
23. Y. Song, D. Shan, R. Chen, E.H. Han, “Corrosion characterization of Mg–8Li alloy in NaCl solution”, Corrosion Science, Vol. 51(5), pp. 1087-1094, May 2009.
24. 林欣滿,「添加鋁對鎂鋰合金特性影響之研究」,逢甲大學,碩士論文,民 國93年。
25. M. Wang, Z. Liu, Z. Liu, S. Yang, Y. Weng and T. Song, “Effects of Sc on microstructure and low-cycle fatigue properties of Al–Li alloy”, Materials Science and Engineering: A, Vol. 483-484, pp. 448-451, Jun.2008.
26. J.S. Leu, C.T Chiang, S. Lee, Y.H. Chen and C.L. Chu, “Strengthening and Room Temperature Age-Softening of Super-Light Mg-Li Alloys”, Journal of Materials Engineering and Performance, Vol. 19(9), pp. 1235-1239, Feb.2010.
27. H.Y. Wu, Z.W. Gao, J.Y. Lin and C.H. Chiu, “Effects of minor scandium addition on the properties of Mg–Li–Al–Zn alloy”, Journal of Alloys and Compounds, Vol. 474(1-2), pp. 158-163, Apr.2009.
28. 陳學翰,「Be、Sc微量元素添加對LAZ1110合金機械性質之研究」,國立東華大學,碩士論文,民國97年。
29. 楊祐炘,「超輕鎂鋰合金機械性質研究」,國立中央大學,碩士論文,民國99年。
30. R. Wu, M. Zhang, “Microstructure, mechanical properties and aging behavior of Mg–5Li–3Al–2Zn–xAg”, Materials Science and Engineering: A, Vol. 520(1-2), pp. 36-39, Sep.2009.
31. A. Alamo and A. D. Banchik, “Precipitation phenomena in the Mg-31 at% Li-1 at% Al alloy”, Journal of Material Science, Vol. 15, pp. 222-229, 1980.
32. Y.W. Kim, D.H. Kim, H.I. Lee and C.P. Hong, “Widmanst?tten Type Solidification in Squeeze Casting of Mg-Li-Al Alloys”, Scripta Materialia, Vol. 38(6), pp. 923-929, Feb.1998.
33. G.S. Song, M. Staiger and M. Kral, “Some new characteristics of the strengthening phase in β-phase magnesium–lithium alloys containing aluminum and beryllium”, Materials Science and Engineering: A, Vol. 371 (1-2), pp. 371-376, Apr.2004.
34. H. Zhong, P. Liu, T. Zhou and H. Li, “Design of an age hardening Mg-Li alloy and its aging behavior”, Journal of University of Science and Technology Beijing, Vol. 12(2), pp.182-186, Apr.2005.
35. C. C. Hsu, J. Y. Wang and S. Lee, “Room Temperature Aging Characteristic of MgLiAlZn Alloy”, Material Transactions, Vol. 49(11), pp. 2728-2731, 2008.
36. J.Y. Wang, “Mechanical properties of room temperature rolled MgLiAlZn alloy”, Journal of Alloys and Compounds, Vol. 485(1-2), pp. 241-244, Oct.2009.