| 研究生: |
賴昆佑 Kun-You Lai |
|---|---|
| 論文名稱: |
以統計分析探討文件分類程序對期刊論文分類效果之影響 The Study of the Effects of Text Categorization Processes on Journal Papers Classification by Statistical Analysis |
| 指導教授: |
薛義誠
Yih-Chearng Shiue |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理學系 Department of Information Management |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 統計檢定 、分類器 、期刊論文分類 、文件分類 |
| 外文關鍵詞: | text categorization, journal papers classification, classifiers, hypothesis test |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
期刊論文提供專業領域知識,然資訊超載造成檢索時間成本浪費,應用文件分類技術可讓使用者迅速取得相關領域之期刊論文。文件分類程序包含「前處理」、「文件特徵建構」、「分類方法應用」與「分類結果評估」等四個階段。針對期刊論文之分類效果,本研究以統計假設檢定探討期刊論文分類程序中,特徵權重方法、文章欄位差異與應用不同分類器對分類效果之影響,並與本研究設計之抽樣分配分類器進行比較。由實驗模擬與統計假設檢定分析顯示,第一,以特徵比例作為特徵權重方法分類效果顯著優於特徵頻率。第二,文章欄位以「摘要」之分類效果最佳,優於標題與關鍵字,後兩者則無顯著差異。第三,期刊論文分類以支持向量機分類效果最佳,其次為貝式機率分類器、決策樹以及抽樣分配分類器。第四,應用文件分類技術將期刊論文分類之方法可行。另外針對抽樣分配分類器部分,亦提出分析結果與建議,以提升未來研究所需。
Journal papers provide professional domain knowledge. Nevertheless, emerging of information overloading causes considerable cost of time. Application of text categorization technology could help users to retrieve domain journal papers efficiently. Four phases of text categorization process are “text pre-processing”, “document feature construction”, “applying classification methods” and “evaluation”. This research probes for the effectiveness of: feature weighting, fields of articles and classifiers during the process of journal papers categorization, and also applied sampling distribution classifier within the process. The hypothesis test analysis shows that: 1st, feature ratio performs well significantly than feature frequency. 2nd, fields of abstract are more effective than titles and keywords of journal papers, and there are no difference between the latter two. 3rd, Support vector machines are most effective, then naïve-bayes, decision trees and sampling distribution classifier in order. And 4th, text categorization of journal papers is feasible. Additionally, analysis and recommendation of sampling distribution classifier are also proposed for the future study.
[1]. Fuller M., Zobel J., Conflation based Comparison of Stemming Algorithms, Proceedings of the Third Australian Document Computing Symposium Sydney, Australia, August, 1998.
[2]. Rish Irina, “An Empirical Study of the Naïve Bayes Classifier”, IJCAI2001 Workshop on Empirical Methods in Artificial Intelligence. 2001.
[3]. Margaret H. Dunham, “Data Mining: Introductory and Advanced Topics”, Prentice Hall, 2003.
[4]. Sebastiani F., “Machine Learning in Automated Text Categorization”, ACM Computing Surveys (CSUR), Vol.34, Issue 1, pp.1-47, 2002.
[5]. Sebastiani F., “Text Categorization”, Text Mining and its Applications, WIT Press, Southampton, UK, pp.109-129, 2005.
[6]. Yang Y., Pedersen J., “A Comparative Study on Feature Selection in Text Categorization”, International Conference of Machine Learning (ICML-97), pp.412-420.
[7]. Yang. Y, Liu X., “A re-examination of text categorization methods”, Proceedings of SIGIR’ 99: 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 1999, pp.42-49.
[8]. Joachims T., “Text Categorization with Support Vector Machines: Learning with Many Relevant Features”, Proceedings of the European. Conference on Machine Learning, 1998.
[9]. Salton G., Buckley C., “Term Weighting Approaches in Automatic Text Retrieval”, Information Process, man, 24, 5, 1988, pp.513-523.
[10]. Burges C. “A tutorial on Support Vector Machines for Pattern Recognition”, Data Mining and Knowledge Discovery, 1998, 2(2). pp.121-167.
[11]. Joachims T. “Transductive Inference for Text Classification Using Support Vector Machines”, Proceedings of ICML-99, 16th International Conference on Machine Learning, pp.200-209.
[12]. Coppin B., “Artificial Intelligence Illuminated” Jones and Barlett, 2003.
[13]. Aas K., Eikvil.L., “Text Categorization: A Survey”, Report No. 941, Norwegian Computing Center , June, 1999.
[14]. Garcia Adeva J.J., Pikatza J.M., Florez S., Sobrado F.J., “Intrusion Detection Using Text Mining in a Web-Based Telemedicine System”, Proceedings of the 18th Australian Joint Conference on Artificial Intelligence, 2005.
[15]. Feldman R., Fresko M., “Knowledge Management: A Text Mining Approach”, Proceedings of the 2nd International Conference on Practical Aspects of Knowledge Management, 1998.
[16]. Felldman R., Dagan I., “Knowledge Discovery in Textual Databases (KDT) ”, 1st International Conference on Knowledge Discovery (KDD-95). 1995.
[17]. Lu W., Chien L. Lee H., “Translation of Web Queries Using Anchor Text Mining”, ACM Transaction on Asian Language Information Processing (TALIP), Vol. 1, Issue 2, pp.159-172, 2002.
[18]. Kao A. Poteet. S., “Text Mining and Natural Language Processing – Introduction for the Special Issue”, Springer-Verlag, New York, 2006.
[19]. Stumme G., Hotho A., Beremdt B., “Usage Mining for and on the Semantic Web”, The Semantic Web – ISWC 2002, 1st International Semantic Web Conference (2002), Vol. 2342 of Lecture Notes in Computer Science, pp.264-278.
[20]. Snowball Stemming Algorithms for Use in Information Retrieval, 2003. http://www.snowball.tartarus.org/
[21]. Heller K., Ghahramani Z., “Bayesian Hierarchical Clustering”, ACM International Conference Proceeding Series; Vol. 119, Proceedings of the 22nd international conference on Machine Learning, pp.297-304. 2005.
[22]. Moretti S., “Minimum Cost Spanning Trees Situations and Gene Expression Data Analysis”, ACM International Conference Proceeding Series; Vol. 199 Proceedings form the 2006 workshop on Game theory for Communications and Networks, 2006.
[23]. Goldberg D.E., “Gene Algorithm in Search, Optimization and Machine Learning”, Addison-Wesley, New York, 1989.
[24]. Davis L., “Handbook of Genetic Algorithms”, Van Nostrand Reinhold, New York, 1992.
[25]. Maulik U., Bandyopadhyay S., “Genetic Algorithm-Based Clustering Technique”, Pattern Recognition Vol. 33, pp.1455-1465, 2000.
[26]. Jeffrey L., Solka, Avory C., Bryant, Edward J. Wegman, “Text Data Mining with Minimal Spanning Trees”, Handbook of Statistics, Vol. 24, 2005.