跳到主要內容

簡易檢索 / 詳目顯示

研究生: 江哲豪
Che-Hao Chiang
論文名稱: 頻率域分解方法在結構模態參數分析之應用
Structural Modal Parameters Identification by the Frequency Domain Decomposition Technique
指導教授: 王仲宇
Chung-Yue Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 161
中文關鍵詞: 環境微振結構柔度損傷模態參數奇異值分解頻率域分析
外文關鍵詞: Singular Value Decomposition, Modal Parameters, Damage, Structural Flexibility, Ambient Vibration, Frequency Domain Analysis
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在結構狀態評估的領域中,模態參數識別為一個很重要的課題。有鑒於土木結構之輸入反應不易得到,本論文探討頻率域分解法(Frequency Domain Decomposition, FDD)這個僅需要輸出反應之模態參數識別方法在土木結構狀態評估應用之可行性。藉由此直觀快速之方法,可依奇異值之峰值挑選來得到模態參數得到自然頻率、計算模態振形。文中以鋁梁實驗結合SAP 2000有限元素法,驗證頻率域分解法在以衝擊力進行結構模態分析之可行性。進一步計算得到結構柔度;引入橋梁狀態指標(Bridge Girder Condition Indicator, BGCI)的觀念,得到各模態之貢獻度(Modal Contribution Coefficient)。最後,將此方法應用在現地檢測中,求取橋梁之模態參數。


    In the area of structures condition evaluation, modal parameter identification technique is very important task. However, it is difficult to measure the input loading data in the application of civil infrastructures. In the thesis, the Frequency Domain Decomposition (FDD) technique is applied to conduct the modal identification of output-only systems in the condition evaluation of civil structure. Using this visual and user friendly technique, we can find nature frequencies and mode shapes by simply picking the peak of singular value sketch. From the tests and numerical simulations on an aluminum beam, it shows that the FDD technique can also be applied to the structure system using impact force as the input loading. To establish a complete process of the system identification, the structural flexibility is calculated and the concept of Bridge Girder Condition Indicator is adopted to find the Modal Contribution Coefficient of different mode number. The capability of the techniques developed in this research to find the modal parameters of true structures was validated in field tests.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 IX 第一章 緒論 1 1-1 引言 1 1-2 研究動機與目的 2 1-3 論文大綱 3 第二章 文獻回顧 5 第三章 頻率域分解法的基本原理 7 3.1 理論背景 7 3.1.1 統計學基礎 7 3.1.2 隨機振動理論 11 3.1.3 奇異值分解 20 3.2 FDD方法流程 24 3.3 模態貢獻係數原理 26 3.3.1 模態柔度的基本概念 26 3.3.2 模態貢獻係數 31 第四章 數值模擬與模型實驗 33 4.1 實驗與模擬方式 33 4.1.1 實驗試體 33 4.1.2 實驗設備及方法 36 4.1.3 數值模擬 39 4.2 自然頻率及模態振形分析結果與比較 44 4.2.1 使用不同種類結構反應對頻率域分解法之影響 45 4.2.2 實驗與數值模擬之比較 51 4.2.3 損傷識別 62 4.2.4 FDD應用於環境微振分析 67 4.3 柔度之分析結果與比較 72 4.3.1 柔度正確性之探討-○1中點受一單位力之案例 72 4.3.2 柔度正確性之探討-○2BGCI載重之案例 76 4.3.3 鋁梁模態貢獻係數結果與討論 78 第五章 FDD於現地實驗之應用 80 5.1 台北市婆婆橋橋梁微振 80 5.1.1 婆婆橋橋體概述 80 5.1.2 量測儀器及量測方法 81 5.1.3 量測成果及分析討論 84 5-2 國道高速公路橋墩基礎微振 104 5-2-1大甲溪橋橋體橋墩概述 104 5-2-2量測儀器及量測方法 106 5.2.3量測成果及分析討論 107 第六章 結論與建議 118 6-1 結論 118 6-2 建議 120 參考文獻 121 附錄A實驗#4~#16之自然頻率及模態振形 123 附錄B實驗#6~#16之模態振形曲率變化指標(MMC) 138 附錄C 梁理論變形曲線之推導: 144

    1. 劉正偉,「梁構件系統之識別參數與損傷檢測之應用」國立中央大學土木研究所碩士論文,中壢,2004
    2. 黎文明,「快速傅立葉轉換」,復漢出版社,台灣,1985
    3. 胡昌華,「基於MATLAB 的系統分析與設計—小波分析」
    西安電子科技大學出版社,中國大陸,1999
    4. Bendat J S and Piersol A G, “Engineering Applications of Correlation and Spectral Analysis,” New York: Wiley (1993)
    5. Brincker Rune, Lingmi Zhangand, Palle Andersen,“Modal, identification of output-only systems using frequency domain Decomposition ”, International Seminar on Modal Analysis(ISMA 25), Katholieke Univeraiteit Leuven, Belguim (2000)
    6. Guan Hong, Vistasp. M. Karbhari, Charles S. Sikorsky” Vibration-based Health Monitoring of Highway Bridge Structures Using Output Only Modal Parameter Estimation Technique”, Caltrans Bridge Rearch Conference (2005)
    7. Bendat J. S., A. G. Piersol,” Random data: Analysis and measurement procedures,” John Wiley & Sons Inc, pp.189-327 (1999)
    8. Ewins D. J.,” Modal testing: Theory and practice,” John Wiley & Sons Inc, pp.21-218(1984)
    9. Lin, Y. K., “Probabilitstic Theory of Structural Dynamics,” McGraw-Hill, New York(1967)
    10. Peeters B.,“ System Identification and Damage Detection in Civil Engineering,” Ph.D Thesis, Katholieke University, Leuven, Belgium. (2000)
    11. Zhengsheng Li; James A. Swanson; Arthur J. Helmicki; Victor J. Hunt,“ Modal Contribution Coefficients in Bridge Condition Evaluation,” Journal of Bridge Engineering, Vol. 10, No. 2, March 1, ASCE, p.169–178. (2005)
    12. Ray W. Clough, Joseph Penzien, “Dynamics of Structures” Kathryn Porzio, p4-5 (1993)
    13.國立中央大學大學部結構實驗教材。
    14. Zhang, Z. F., “ Structural identification and its application in condition assessment for constructed facilities,” PhD thesis, Univ. of Cincinnati, Cincinnati. (1995)
    15. Lenett M.“ Global condition assessment using modal analysis and flexibility“PhD thesis, Univ. of Concinnati, Concinnati(1998)
    16.蘇文喜,「模態參數於梁結構損傷檢測之應用」國立中央大學土木研究所碩士論文,中壢,2003。
    17.李森枏,「SAP2000入門與工程上之應用」,科技圖書,2003。
    18. Fong, Y. C., “Foundation of Solid Mechanics.“ (1965)
    19. Allemang R. L. and Brown D. L., “A Correlation Coefficient for Modal Vector Analysis,“ Proceeding of the First International Modal Analysis Conference, Bethel, Connecticut, U. S. A, 110- 116 (1983).
    20.謝豪駿,「小波分析於梁構件損傷檢測之應用」,國立中央大學土木研究所碩士論文,中壢,2005。
    21. Ellis, B. R., Jeary, A. P. “Recent work on the dynamic behavior of tall buildings at various amplitudes.” Proc., 7th World Conf. on Earthquake Engineering, Vol. 7, 313–316. (1980)
    22. Askegaard, V., and Mossing, P., “ Long term observation of RCbridge using changes in natural frequencies,” Nordic concrete research, Publication No. 7, Nordic Concrete Federation, Norway, 20–27. (1986)
    23. Farrar, C., and Jauregui, D.,“ Damage detection algorithms applied to experimental and numerical modal data from the I-40 bridges.” Los Alamos National Laboratory Rep. LA-13074-MS, Los Alamos, N.M. (1996)
    24.黃炯憲,「微動量測分析工具探討(二)-時間序列法」,國家地震工程研究中心報告,民國88年八月。

    QR CODE
    :::