跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林意淳
Yi-Chun Lin
論文名稱: 網格型微分方程的行進波的數值解
Numerical Computation for Traveling Wave Solutions of Lattice Differential Equations
指導教授: 許正雄
Cheng-Hsiung Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 93
語文別: 英文
論文頁數: 18
外文關鍵詞: Traveling Wave
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文主要在研究網格型微分方程的行進波的數值解。我們利用指數型遞減去逼進有限區間之外的行進解,在有限區間之內我們利用有限差分逼進解的一階微分項以及利用continuation method 去逼近輸出函數 。然後再利用牛頓法去疊代找出行進波的數值解。在論文的最後一節我們也給了一些數值圖形去驗證行進波解的存在性。


    In this thesis, we investigate a numerical method for solving nonlinear differential-difference equations arising from the traveling wave equations of a large class of lattice di®erential equations. The pro¯le equation is
    of ¯rst order with asymptotically boundary conditions. The problem is approximated via a difference scheme which solves the problem on a finite interval by applying an asymptotic representation at the endpoints and iterative techniques to approximate the speed, and a continuation method to start the procedure. The procedure is tested on a class of problems
    which can be solved analytically to access the scheme''s accuracy and stability, and applied to many lattice differential equations that models
    the waves propagation in neural networks.

    Contents ˙Abstract ……………………………………………………………1 ˙Introduction………………………………………………………2 ˙Solution approximation…………………………………………4 ˙Traveling Waves for[r, p ,s]=[1,-2,1]……………………9 ˙Traveling waves for r + p + s = 0…………………………13 ˙References…………………………………………………………17

    [1] D. G. Anderson and H. F. Weinberger, Nonliner di®usion in population ge-
    netics, combustion and nerve propagation, Lecture Notes in Mathematics,
    446 (1975), Springer, New York, pp. 5-49.
    [2] P. W. Bates, X. Chen and A. Chmaj, Traveling waves of bistable dynamics
    on a lattice, SIAM J. Math. Anal., 35 (2003), pp. 520-546.
    [3] J. Bell, Some threshold results for models of myelinated nerves, Math.
    Bioscience, 54 (1981), pp. 181-190.
    [4] R. Burden, J. Faires and A. Reynolds, Numerical analysis, 2nd edn. Boston:
    Prindle, Weber, Schemdit Publishers, 1981.
    [5] J. W. Cahn, Theory of crystal growth and interface motion in crystalline
    materials, Acta Metallurgica, 8 (1960), pp. 554-562.
    [6] J. W. Cahn, J. Mallet-Paret, and E. S. Van Vleck, Traveling wave solutions
    for systems of ODEs on a two-dimensional spatial lattice, SIAM J. Appl.
    Math., 59 (1999), pp. 455-493.
    [7] H. Chi, J. Bell and B. Hassard, Numerical solution of a nonlinear advance
    delay di®erential equation from nerve conduction theory, J. Math. Biology,
    24 (1986), pp. 583-601.
    [8] S.-N. Chow, J. Mallet-Paret, and W. Shen, Traveling waves in lattice dy-
    namical systems, J. Diff.Eqns., 149 (1998), pp. 248-291.
    [9] L. O. Chua, CNN: A Paradigm for Complexity, World Scienti¯c Series on
    Nonlinear Science, Series A, Vol. 31, World Scienti¯c, Singapore, 1998.
    [10] L. O. Chua and T. Roska, The CNN paradigm, IEEE Trans. Circuits Syst.,
    40 (1993), pp. 147-156.
    [11] L. O. Chua and L. Yang, Cellular neural networks: Theory, IEEE Trans.
    Circuits Syst., 35 (1988), pp. 1257-1272.
    [12] L. O. Chua and L. Yang, Cellular neural networks: Applications, IEEE
    Trans. Circuits Syst., 35 (1988), pp. 1273-1290.
    [13] H. E. Cook, D. de Fontaine, and J. E. Hilliard, A model for diffusion
    on cubic lattices and its application to the early stages of ordering, Acta
    Metallurgica, 17 (1969), pp. 765-773.
    [14] P. Deu°hard, Stepsize control of continuation methods and its special ap-
    plication to multiple shooting techniques, Numer. Math., 33 (1979), pp.
    115-146.
    [15] G. B. Ermentrout and N. Kopell, Inhibition-produced patterning in chains
    of coupled nonlinear oscillators, SIAM J. Appl. Math., 54 (1994), pp. 478-
    507.
    [16] T. Erneux and G. Nicolis, Propagation waves in discrete bistable reaction-
    di®usion systems, Physica D, 67 (1993), pp. 237-244.
    [17] P.C. Fife and J. B. McLeod, The approach of solutions of nonlinear equa-
    tions to traveling front solutions, Arch. Rat. Mech. Anal., 65 (1977), pp.
    335-361.
    [18] D. Hankerson and B. Zinner, Wavefronts for a cooperative tridiagonal sys-
    tem of di®erential equations, J. Dyn. Diff. Eqns., 5 (1993), pp. 359V373.
    [19] C.-H. Hsu and S.-S. Lin, Existence and multiplicity of traveling waves in a lattice dynamical system, J. Di®. Eqns., 164 (2000), pp. 431-450.
    [20] C.-H. Hsu and S.-Y. Yang, Wave propagation in RTD-based cellular neural
    networks, J. Di®. Eqns., 204 (2004), pp. 339-379.
    [21] H. Hudson and B. Zinner, Existence of traveling waves for a generalized
    discrete Fisher''s equations, Comm. Appl. Nonlinear Anal., 1 (1994), pp.
    23-46.
    [22] M. Itoh, P. Juli¶an, and L. O. Chua, RTD-based cellular neural networks
    with multiple steady states, Internat. J. Bifur. and Chaos, 11 (2001), pp.
    2913-2959.
    [23] J. P. Keener, Propagation and its failure in coupled systems of discrete
    excitable cells, SIAM J. Appl. Math., 47 (1987), pp. 556-572.
    [24] J. P. Laplante and T. Erneux, Propagation failure in arrays of coupled
    bistable chemical reactors, J. Phys. Chem., 96 (1992), pp. 4931-4934.
    [25] J. Mallet-Paret, The Fredholm alternative for functional di®erential equa-
    tions of mixed type, J. Dyn. Di®. Eqns., 11 (1999), pp. 1-48.
    [26] J. Mallet-Paret, The global structure of traveling waves in spatial discrete dynamical systems, J. Dyn. Di®. Eqns., 11 (1999), pp. 49-127.
    [27] H. K. Mckean, Nagumo''s equation, Adv. Math., 4 (1970), pp. 209-223.
    [28] A. De Pablo and J. L. Vazquez, Traveling waves and ¯nite propagation in
    a reaction-di®usion equation, J. Di®. Eqns., 93 (1991), pp. 19-61.
    [29] P. Thiran, K. R. Crounse, L. O. Chua, and M. Hasler, Pattern formation
    properties of autonomous cellular neural networks, IEEE Trans. Circuit
    Syst., 42 (1995), pp. 757-774.
    [30] E. Wasserstorm, Numerical solution by the continuation method, SIAM
    Review, 15 (1973), pp. 89-119 .
    [31] F.Werblin, T. Roska, and L. O. Chua, The analogic cellular neural network
    as a bionic eye, Internat. J. Circuit Theory Appl., 23 (1994), pp. 541-569.
    [32] B. Zinner, Existence of traveling wavefront solutions for discrete Nagumo
    equation, J. Di®. Eqns., 96 (1992), pp. 1-27.
    [33] B. Zinner, Stability of traveling wavefronts for the discrete Nagumo equa-
    tion, SIAM J. Math. Anal., 22 (1991), pp. 1016-1020.

    QR CODE
    :::