| 研究生: |
常珮慈 Pei-Tzu Chang |
|---|---|
| 論文名稱: |
相位控制之主動調諧質量阻尼器應用於多自由度構架分析與實驗驗證 |
| 指導教授: |
賴勇安
Yong-An Lai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 218 |
| 中文關鍵詞: | 調諧質量阻尼器 、主動控制 、相位控制 、多自由度結構 、能量流理論 、振動台實驗 、離散時間系統 、即時控制 |
| 外文關鍵詞: | multiple degrees of freedom structure, real time control |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對相位控制之主動式調諧質量尼器(Phase Control – Active Tuned Mass Damper, PC-ATMD)應用於多自由度結構進行驗證。其中相位控制律,由結構回饋之量測值分為「結構位移回饋之相位控制」與「結構絕對加速度回饋之相位控制」,而發展結構位移回饋之相位控制主動調諧質量阻尼器(Phase Control Displacement feedback – Active Tuned Mass Damper, PCD-ATMD)與結構絕對加速度回饋之相位控制主動調諧質量阻尼器(Phase Control abs. Acceleration feedback – Active Tuned Mass Damper, PCA-ATMD),接著以多自由度結構加裝PC-ATMD案例情況,進行各項數值模擬分析,探討各情況之減振效果及特性,並以多自由度構架試體振動台實驗進行驗證。相位控制之主動調諧質量阻尼器,是於調諧質量阻尼器與結構間施加控制力,並可即時調整調諧質量阻尼器之運動,使調諧質量阻尼器與結構保持-90度相位差,調諧質量阻尼器也擁有最大能量流(Power Flow),因此有最佳之減振效果。多自由度結構加裝PC-ATMD之分析與實驗結果表明,從結構頻率反應函數與地震力作用下之結構歷時反應,皆有良好之減振效果,而其量測數量少,不需全狀態回饋且效果與線性二次控制器(Linear Quadratic Regulator, LQR)有相當之減振效果。另外由敏感度分析中,PCD-ATMD和PCA-ATMD之設計增益參數變化對結構之減振效果影響較不明顯;而在系統穩定度分析說明,在一定範圍內兩者皆為穩定可控制之系統,顯示兩者之控制方法皆有強健性。
The purpose of this research is to verify the application of the phase control tuned mass dampers (PC-ATMDs) implemented on multiple degrees of freedom structure. The essential of the PC-ATMD is to apply control force between the tuning mass and the structure, so that the PC-ATMD can achieve a 90-degree phase lag of structure to induce maximum power flow resulting in outstanding vibration reduction capability. Base on the difference of measurement signal feedback from the structure, the displacement feedback or the absolute acceleration feedback, the PC-ATMD can be further distinguished as Phase Control Displacement feedback-Active Tuned Mass Damper (PCD-ATMD) and Phase Control absolute Acceleration feedback-Active Tuned Mass Damper (PCA-ATMD). The numerical simulation results show that the PCD-ATMD and PCA-ATMD has excellent performance on structural vibration reduction in both frequency domain and time domain analysis, and then the shaking table experiment is conducted by using a 3-stories shear building frame incorporated with the PCD-ATMD or PCA-ATMD to verify the performance regarding the structural vibration reduction. Moreover, the PC-ATMD is comparable with conventional linear-quadratic-regulator (LQR) controlled ATMD but full state feedback measurement of the entire system or system observer is not required. The sensitivity and stability analysis also shows that the variation of gain parameters of PCD-ATMD or PCA-ATMD in a certain range is durable and stable. Hence, both of the active phase control algorithms are robust.
1 內政部營建署(2011)。建築物耐震設計規範與解說(中華民國100年1月19日台內營字第0990810250號)。
2 羅偉宸(2020)。主動式相位控制調諧質量阻尼器之研發與實驗驗證。國立中央大學土木工程學系研究所碩士論文。
3 Den Hartog J.P.(1956). Mechanical Vibrations(4th ed.). New York: McGraw-Hill.
4 Warburton G.B. and Ayorinde E.O.(1980). Optimum absorber paraments for simple systems. Earthquake Engineering and structural Dynamics, 8(3), pp.197-217.
5 Ayorinde E.O. and Warburton G.B.(1980). Minimizing structural vibrations with absorbers. Earthquake Engineering and structural Dynamics, 8(3), pp.219-236.
6 Warburton G.B.(1982). Optimum absorber paraments for various combinations of response and excitation parameters, Earthquake Engineering and structural Dynamics, 10(3), pp.381-401.
7 Sadek F., Mohraz B., Taylor A.W. and Chung R.M.(1997). A Method of Estimating the Parameters of Mass Dampers for Seismic Application, Earthquake Engineering and structural Dynamics, 26(6), pp.617-635.
8 Bakre S.V. and Jangid R.S.(2006). Optimum parameters of tuned mass damper for damped main system, Structure Control and Health Monitoring, 14 (3), pp.448-470.
9 鍾立來、顧丁與、賴勇安、吳賴雲(2012)。調諧質塊阻尼器於基底震動之最佳減震設計參數。結構工程,第二十七卷,第四期,頁70-90。
10 王哲夫(1996)。被動調諧質量阻尼器之最佳設計暨應用。國立中興大學土木工程學系研究所。
11 Lee C.L., Chen Y.T., Chung L.L. and Wamg Y.P.(2006). Optimal design theories and applications of tuned mass dampers, Engineering Structures, 28(1), pp.43-53.
12 Ghosh A. and Basu B.(2005). A closed-form optimal tuning criterion for TMD in damped structures, Structural, Control and Health Monitoring, 14(4), pp.681-692.
13 Chang C.C.(1999). Mass dampers and their optimal designs for building vibration control, Engineering Structures, 21(5), pp.454-463.
14 Fujino Y. and Abe M.(1993), Design formulas for tuned mass dampers based on a perturbation technique, Earthquake Engineering and Structural Dynamics, 22(10), pp.833-854.
15 Chang C.M., Shia S. and Lai Y.A.(2018). Seismic Design of Passive Tuned Mass Damper Parameters Using Active Control Algorithm, Journal of Sound and Vibration, 426, pp.150-165.
16 Hadi N.S. and Aifiadi Y.(1998). Optimum design of absorber for MDOF structures, Journal of Structural Engineering, 124, pp.1272-1280.
17 Soong T.T. and Manolis G.D.(1987). Active structures, Journal of Structural Engineering, 113(11), pp.2290-2301.
18 Chung L.L., Reinhorn A.M. and Soong T.T.(1988).Experiments on active control of seismic structures, Journal of Engineering Machanics, 114(2), pp.241-256.
19 Reinhorn A.M., Soong T.T., Lin R.C., Riley M.A., Wang Y.P., Aizawa S. and Higashino M.(1992). Active Bracing System: A Full Scale Implementation of Active Control, Technical Report NCEER-92-0020.
20 Spencer B.F. Jr., Suhardjo J. and Sain M.K.(1994). Frequency domain optimal control strategies for aseismic protection, Journal of Engineering Mechanics, 120, pp.135-158.
21 Chang J.C.H. and Soong T.T.(1980). Structure control using control using active tuned mass dampers, Journal of Engineering Mechanics, 106, pp.1091-1098.
22 Chung L. L., Lin R. C., Soong T, T., and Reinhorn A. M.(1989). Experimental Study of Active Control for MDOF Seismic Structures, J. Eng. Mech., 115(8), pp.1609-1627.
23 Nishimura I.,Kobori T., Sakamoto M., Koshika N.,Sasaki K. and Ohrui S., Active tuned mass damper, Smart Materials and Structures, 1, pp.306-311.
24 Chang C.C. and Yang H.T.Y.(1995). Control of buildings using active tuned mass dampers, Journal of Engineering Mechanics, 121(3), pp.355-366.
25 Yang D.H., Shin J. H, Lee H.W., Kim S.K. and Kwak M.K(2017). Active vibration control of structure by Active Mass Damper and Multi-Modal Negative Acceleration Feedback control algorithm, Journal of Sound and Vibration, 392, pp.18-30
26 Loh C.H. and Chao C.H.(1996). Effectiveness of active tuned mass damper and seismic isolation on vibration control of multi-storey building, Journal of Sound and Vibration, 193(4), pp.773-792.
27 Ankireddi S. and Yang H.T.Y. (1996). Simple ATMD control methodology for tall buildings subject to wind loads, Journal of Structural Engineering, 122(1), pp.83-91
28 Li C., Liu Y. and Wang Z.(2003). Active multiple tuned mass dampers: A new control strategy, Journal of Structural Engineering, 32, pp.949-964.
29 Li C. and Liu Y.(2002). Active multiple tuned mass dampers for structures under the ground acceleration, Earthquake Engineering and Structural Dynamics, 31, pp.1041-1052.
30 Nagashima I. (2001). Optimal displacement feedback control law for active tuned mass damper, Earthquake Engineering and Structural Dynamics, 30, pp.1221-1242.
31 Rather F. and Alam M.(2021). Active Seismic Control of Structures Using Pole Placement Technique, Recent Advances in Structural Engineering, 135, pp.201-212.
32 Li C., Li J. and Qu Y.(2010). An optimum design methodology of active tuned mass damper for asymmetric structures, Mechanical Systems and Signal Processing, 24(3), pp.746-765.
33 Mackriell L.E., Kwok K.C.S. and Samali B. (1997). Critical mode control of a wind-loaded tall building using an active tuned mass damper, Engineering structures, 19, pp.834-842.
34 Samali B. and Al-Dawod M. (2003). Performance of a five-storey benchmark model using an active tuned mass damper and a fuzzy controller, Engineering structures, 25, pp.1597-1610.
35 Collins R., Basu B. and Broderick B.(2006). Control strategy using bang-bang and minimax principle for FRF with ATMDs, Engineering structures, 28, pp.349-356.
36 Li C., Yu Z., Xiong X. and Wang C.(2010). Active multiple-tuned mass dampers for asymmetric structures considering soil-structure interaction, Structural Control and Health Monitoring, 17, pp.452-472.
37 Kim Y.M., You K.P., You J, Y., Paek S.Y. and Nam B.H.(2016), “LQR Control of Along-Wind Responses of a Tall Building using Active Tuned Mass Damper, The 2016 World Congress on Advances in Civil, Environmental, and Materials Research(ACEM16), Jiju Island, Korea, August 28-September 1.
38 呂國華(1993)。考慮時間延遲之離散時間系統最佳直接輸出回饋控制。國立中興大學土木工程學系研究所碩士論文。
39 余心權(2001)。離散時間延遲系統直接加速度回饋控制。國立中興大學土木工程學系研究所碩士論文。
40 You K. P., You J. Y. and Kim Y. M.(2014). LQG Control of Along-Wind Response of a Tall Building with an ATMD, Mathematical Problems in Engineering, 2014. pp.1-7.
41 甘錫瀅、張敬昌、謝紹松(2003)。細說台北 101 高樓,科學月刊,第三十八卷,第八期,頁690-699。
42 Kareem A., Kijewski T. and Tamura T.(1999). Mitigation of motions of tall buildings with specific examples of recent applications, Wind and Structures, 2, pp.201-251.
43 Akira N. and Yutaka I.(2001). Overview of the application of active/semiactive control to building structures in Japan, Earthquake Engng Struct. Dyn., 30, pp.1565-1574.
44 Yoshiki I.(2009). Active and semi‐active vibration control of buildings in Japan—Practical applications and verification, Struct. Control Health Monit, 16, pp.703-723.
45 鍾立來、吳賴雲、李明璆、楊培堅(2004)。東帝士85國際廣場之結構主動控制,結構工程,第十四卷,第二期,頁45-65。
46 Soong T.T. and Dargush G.F.(1997). Passive Energy Dissipation Systems in Structural Engineering, New York: Wiley.
47 Lin C.C., Chung L.L. and Chll S. Y.(1996). Optimal discrete-time structural control using direct ouyput feedback, Engineering Structures, 18(6), pp.472-480.
48 Lin C.C. and Soong T.T.(2013). Seismic Protection of Structures Using Tuned Mass Dampers with Resettable Variable Stiffness, Advances in Science and Technology, 83, pp 75-84
49 Anil K.Chopra (2015). Dynamics of structures.,4th ed, New York: Pearson.