| 研究生: |
劉珮汝 Pei-Ju Liu |
|---|---|
| 論文名稱: |
利用掃描式電子顯微鏡研究單一及混合硫醇分子於金(111)電極上的吸附 |
| 指導教授: |
姚學麟
Shueh-Lin Yau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 硫醇分子 、掃描式電子顯微鏡 |
| 外文關鍵詞: | thiol, STM |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用循環伏安法(CV)和掃描式電子穿隧顯微鏡(STM)探討單一及混合硫醇分子於金(111)上的吸附。首先,分別對MAA、MPA、MPS添加於0.1M硫酸溶液中並吸附於金(111)進行觀察。在MAA及MPA部分,尾端COOH官能基導致分子間氫鍵及兩層分子吸附於金(111)上。第一層分子以其硫端和金(ad)吸附原子及金載體形成共價鍵,吸附構型為RS-Au(ad)-SR一組,尾端之COOH朝向溶液;第二層分子藉氫鍵來和第一層分子作用。分子中間碳鏈長度不同造成分子間作用力不同,最終表面結構亦不同。相對於MAA分子,MPA分子結構較為複雜,較大的自由度導致較複雜的吸附結構。電位對兩層分子的結構有明顯的影響,特別是較負電位時,第二層分子逐漸脫附,暴露第一層的分子,可能是水合氫離子濃度增加,造成分子間氫鍵的斷裂。與單純浸泡方式製作的分子膜做比較,觀察到分子結構完全不同。在MPS部分,尾端官能基為SO3-,導致只有一層分子吸附於金(111)上,分子間的靜電斥力,造成較MPA及MAA低的覆蓋度,只有在較正電位時,MPS分子尾端帶負官能基會被電場穩定在電極上,而形成規則排列。
於混合系統中,分別對MAA+MPA、MPA+MPS吸附於金(111)進行觀察。在MAA及MPA部分,相同官能基導致他們均勻混合吸附於金(111)上,形成的結構和單一分子吸附不同,吸附結構的規則度較差,在分子解析STM圖像中,兩種分子產生不同的亮點,MPA較MAA亮。表面吸附分子MPA:MAA的比例和溶液中成分不成比例,可能和分子吸附的快慢有關,MPA吸附的速率較快。MPA及MPS部分,分子混合有別於單一分子MPA或MPS的吸附結構,觀察到兩種新結構,為(√13 √21)及(3 √13),推測分子均勻混合。於正電位0.4V觀察到(3 √13)分子結構,覆蓋度為0.21。當電位往負調於0.1V,分子結構轉變為(√13 ×√21)結構,覆蓋度為0.105。覆蓋度變低,推測部分分子脫附造成。
In this study,the adsorption of single and mix thiol molecules on Au(111) were investigate by cyclic voltammetry and scanning tunneling microscopy(STM). First,MAA, MPA, and MPS were separately added to a 0.1 M sulfuric acid .Both MPA and MAA molecules are adsorbed in bilayer configurations, indicating the important intermolecular interaction of hydrogen bonds via –COOH groups in these molecules. Lowering potential of Au(111) electrode results in dissolution of these bilayer structures, yielding patches of MAA and MPA monolayer directly bonded to Au(111). Molecular-resolution STM imaging is used to determine the spatial structures of these molecules. Mercaptopropanic sulfonic acid (MPS) is also examined and compared with MAA and MPA. MPS appears to be adsorbed in monolayer on Au(111). The structures seen with MPA and MPS monolayer adsorbed on Au(111) are all different, indicating that the interaction between terminal groups of these thiol molecules plays an important role in their surface organizations.
In the mix system, MAA+MPA and MPA+MPS were adsorbed on Au(111). In the MAA and MPA parts, the same functional groups cause them to be uniformly mixed and adsorbed on Au (111). In the STM image, the two molecules are different. MPA is brighter than MAA. The ratio of surface adsorption molecule MPA:MAA is not proportional to the composition of the solution, which may be related to the speed of molecular adsorption, and the rate of MPA adsorption is faster. In the MPA and MPS parts, two new structures are observed, which are(√13×√21) and( 3×√13), and molecules are uniformly mixed.
1. Bigelow, W. C.; Pickett, D. L.; Zisman, W.A. Journal of Colloid Science 1946, 1, 513.
2. Kuhn, H.; Ulman, A. Thin Films 1995, Academic Press: New York.
3. Nuzzo, R. G.; Allara, D. L. Journal of the American Chemical Society 1983, 105, 4481.
4. Decher, G.; Hong, J. D.; Schmit, J. Thin Solid Films 1992, 210-211,831
5. C Huang, 2006, National Sun Yat-sen University
6. 林昌諺,2005, NCTU
7. 黃佩珍, 2001, 奈米技術專刊
8. Zukauskaite, N.; Malinauskas, A. Sov. Electrochem. 1989, 24, 1564.
9. Feng, Z. V.; Li, X.; Gewirth, A. A. J. Phys. Chem. B. 2003, 107, 9415.
10. John C. Flake, J. Am. Chem. Soc. 2017, 139, 3399−3405
11. Fenter, P.; Eisenberger, D.; Liang, K. S. Phys. Rev. Lett. 1993, 70,2447.
12. Poter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D. J. Am.Chem. Soc. 1987,
13. Poirier, G. E.; Tarlov, M. J.; Rushmeier, H. E. Langmuir 1994, 10,3383.
14. Poirier, G. E.; Tarlov, M. J. J. Phys. Chem. 1995, 99, 10966.
15. Poirier, G. E. Chem. Rev. 1997, 97, 1117.
16. Huangxian Ju, Phys. Chem. 2001, 3, 3769-3773
17. A. Kudelski / Surface Science 2002, 219–223
18. Yun Wang, J. Phys. Chem. C, 2011, 115 (21), pp 10630–10639
19. Yun Wang, J. Phys. Chem. C, 2009, 113 (45), pp 19601–19608
20. John T. Yates, Jr.Phys. Rev. Lett. 2006, 97, 146103
21. Yoon, H. A.; Materer, N.; Salmeron, M. A. Surf. Sci. 1997, 376, 254.
22. Domange, J. L.; Ouder, J. Surf. Sci. 1968, 11, 124.
23. Ruan, L.; Stensgaard, I.; Besenbacher, F.; Jensen, F.; Læ gsgaard, E. Ultramicroscopy 1992, 42-44, 498.
24. Foss, M.; Feidenhans’l, R.; Nielsen, M.; Findeisen, E.; Buslaps, T.; Johnson, R. L.; Besenbacher, F. Surf. Sci. 1997, 388, 5.
25. Wahlström, E.; Ekvall, I.; Olin, H.; Lindgren, S.; Walldén, L. Phys. Rev. B 1999, 60, 10699
26. Vericat, C.; Andreasen, G.; Vela, M. E.; Salvarezza, R. C. J. Phys. Chem. B 2000, 104, 302.
27. Gao, X.; Zhang, Y.; Weaver, M. J. J. Phys. Chem. 1992, 96, 4156.
28. Sugimasa, M.; Inukai, J.; Itaya, K. J. Electrochem. Soc. 2003, 150,E110
29. Wang, D.; Xu, Q. M.; Wan, L. J.; Wang, C.; Bai, C. L. Surf. Sci. 2002,499, L159.
30. Zeng, H. C.; McFarlane, R. A.; Mitchell, K. A. R. Phys. Rev. B 1989,
31. Bahr, C. C.; Barton, J. J.; Hussain, Z.; Robey, S. W.; Tobin, J. G.; Shirley, D. A. Phys. Rev. B 1987, 35, 3773.
32. Colaianni, M. L.; Chorkendorff, I. Phys. Rev. B 1994, 50, 8798.
33. Driver, S. M.; Woodruff, D. P. Surf. Sci. 2001, 479, 1.
34. Safarowsky, C.; Spaenig, A.; Broekmann, P.; Wandelt, K. Surf. Sci.
35. M. Petri et al. / Electrochimica Acta 49 (2003) 175–182
36. Yanson, Y.; Frenken, J. W. M.; Rost, M. J. Phys. Chem. Chem. Phys. 2011, 13, 16095
37. Petri, M.; Kolb, D. M.; Memmert, U.; Meyer, H. Electrochim. Acta 2003, 49, 183
38. Accounts of chemical research 2012 ,45,1183–1192