| 研究生: |
蔡惠心 Hui-Hsin Tsai |
|---|---|
| 論文名稱: |
PEARL立方衛星姿態辨識與控制次系統之設計與模擬 Design and Simulation of Attitude Determination and Control Subsystem for PEARL CubeSat |
| 指導教授: |
趙吉光
Chi-Kuang Chao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學與工程學系 Department of Space Science and Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 立方衛星 、姿態辨識與控制 |
| 外文關鍵詞: | Attitude Determination and Control |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文在於設計及模擬PEARL立方衛星的姿態辨識與控制次系統(ADCS),PEARL立方衛星是一枚通訊衛星,任務目的為驗證衛星與地面站能以Ka-band通訊,以及科學酬載小型電離層探測儀(CIP)量測影響通訊的電漿密度不規則體,在衛星不同模式中ADCS要能作姿態控制達到指向需求以達成任務。根據衛星需求設計次系統、控制模式與控制流程。使用MATLAB/Simulink以Software in the loop的方式模擬ADCS,建立真實太空中的環境、擾動、軌道、衛星運動學模型用來進行不同運作模式中的控制演算法與模擬。如Detumbling控制、Sun-Pointing控制、LVLH控制、Target-Pointing控制,模擬結果成功達到指向需求穩定衛星。
This thesis is mainly about the design and simulation of Attitude Determination and Control Subsystem (ADCS) for Propagation Experiment using kurz-Above-band Radio in Low earth orbit (PEARL) CubeSat. PEARL CubeSat is a communication satellite with the objective of verifying the communication of the ground station and the CubeSat using Ka-band transceiver, measuring the plasma irregularities of the Earth’s ionosphere that affects the communication systems. ADCS shall be able to control the attitude of PEARL in different operational mode in order to reach the pointing requirements and accomplishing the mission. Designs of the control mode and control process are in terms of the requirements. The ADCS is modeled as a software in the loop with MATLAB/Simulink. A scenario of the real space with environments, disturbances, spacecraft dynamics, sensors, actuators models are created to design the control algorithms and simulations of different control mode. Such as Detumbling control, Sun-Pointing control, LVLH control, Target-Pointing control. The simulation results reach the pointing requirements and stabilize the CubeSat successfully.
[1] Valdemir Carrara and Hélio Koiti Kuga, “Estimating friction parameters in reaction wheels for attitude control.”, Sao Jose dos Campos, SP, Brazil, 2013.
[2] CubeADCS Interface Control Document V3.18, South Africa, 2020.
[3] Mogens, Blanke, Martin Birkelund Larsen, Satellite Dynamics and Control in a Quaternion Formulation, Technical University of Denmark, 2010.
[4] Alicia Johnstone, “CubeSat Design Specification (1U – 12U) REV 14”, San Luis Obispo, CA, 2020.
[5] James R. Wertz, Wiley J. Larson, Space Mission Analysis and Design Third Edition, Douglas Kirkpatrick, United States Air Force Academy Donna Klungle, Microcosm, Inc., 1999.
[6] James R. Wertz, Fundamentals of Spacecraft Attitude Determination and Control, Springer New York Heidelberg Dordrecht London, 2014.
• [7] MARCEL J. SIDI, Spacecraft Dynamics and Control, Cambridge University Press, 1997.
[8] NovAtel OEM719 Product Sheet REV 6
[9] Paweł Zagórski, “Modeling disturbances influencing an Earth-orbiting satellite.”, AGH University of Science and Technology, 2012.
[10] Jeremy Davis, “Mathematical Modeling of Earth's Magnetic Field.”, Virginia Tech, Blacksburg, 2004.
[11] IAGA V-MOD Geomagnetic Field Modeling
http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
[12] Kasper Fuglsang Jensen, Kasper Vinther, “Attitude Determination and Control System for AAUSAT3.”, Aalborg University, 2010.
[13] Staff of Princeton Satellite Systems, Inc, ATTITUDE AND ORBIT CONTROL USING THE SPACECRAFT CONTROL TOOLBOX V4.6, 2000.
[16] Steven R. Hirshorn , NASA Systems Engineering Handbook, Washington, DC, 2007.
[17] National oceanic and atmospheric administration, National aeronautics and space administration, United states air force, 1976 U.S. Standard Atmosphere, Washington, DC, 1976.
[18] Howard D. Curtis Embry-Riddle, Orbital Mechanics for Engineering Students, Aeronautical University Daytona Beach, Florida, 2015.
[19] International Geomagnetic Reference Field (IGRF-13)
http://wdc.kugi.kyoto-u.ac.jp/igrf/index.html
[20] Magnetic Field of the Earth
http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/MagEarth.html
[21] IDEASSAT-Orbit
https://www.heavens-above.com/orbit.aspx?satid=47458&lat=0&lng=0&loc=Unspecified&alt=0&tz=UCT&cul=zh-CHT
[21] Brian Gasberg, Thomsen Jens Nielsen, “CubeSat Sliding Mode Attitude Control - Developing Testbed for Verification of Attitude Control Algorithms.”, Aalborg University, 2016.
[22] Barry B. Goeree, Brian Shucker,“Geocentric Attitude Control of a Small Satellite for Ground Tracking Maneuvers.”, University of Arizona, 1999.
[23] Dániel Bolgár, Nikolaos Biniakos, Alexandru-Cosmin Nicolae, “Fault Tolerant Attitude Control of a Pico-Satellite Equipped with Reaction Wheels and Magnetorquers.”, Aalborg University, 2018.
[24] Alexandre Cortiella et al., “3 CAT-2: Attitude Determination and Control System for a GNSS-R Earth Observation 6U CubeSat Mission.”, Universitat Politècnica de Catalunya, 2017.
[25] Dragonfly Aerospace Chameleon Imager brochure