跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張耀元
Yao-Yuen Chang
論文名稱: 氧化鈦/環氧樹酯奈米複合之高折射率透明厚膜
High Refractive Index and Transparent Thick Film of TiO2/Epoxy Nanocomposite
指導教授: 蔣孝澈
Anthony S.T. Chiang
張光偉
Guang-Way Jang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 75
中文關鍵詞: 有機無機混成材料高折射率奈米複合材料光學厚膜氧化鈦環氧樹酯透明膜
外文關鍵詞: titanium dioxide, epoxy, organ/inorganic hybrid material, nanocomposite, high refractive index, optical thick film, transparent film
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   此研究目的為製作出具有高折射率光學性質的透明塊材或膜,其中氧化鈦本身具有高折射率(銳鈦相R.I=2.5),適合被用來當作提升有機無機複合材料折射率中的無機添加材料。有機材料的部分為常被用作LED 封裝材料的環氧樹酯(R.I~1.51)。如果氧化鈦可以和樹酯混成為有機無機透明材料,便可以提高其應用價值。為了使混成材料的高折射率及穿透度等性質同時兼備的原則下,氧化鈦粒子大小必須有所控制( 10nm 以下),粒子越大因散射效應會使穿透度越低。
      在氧化鈦合成部分,是以四氯化鈦為前趨物在特定的酸鹼值下進行水解縮合,得到白色氫氧化鈦,經過去離子水清洗鹽類後,在酸性環境下進行解膠及結晶。解膠出來的粒子大小和溶膠濃度及解膠酸鹼值等有所關連,此研究第一步為嘗試找出分散在水中最小粒子的最佳條件。
      要將氧化鈦和樹酯混合前必須將氧化鈦經過表面改質從水相轉到有機相,如此才有機會和樹酯相混合,因此改質方面我們嘗試葵胺等改質劑,最後能分散在氯仿中。另外也用具有官能基的矽烷類如MPS 及GPS 改質劑,最後能分散至醋酸乙酯。並進行下一步此分散液和環氧樹酯的混成。環氧樹酯實驗上用的是4221 及EP828 這兩種。
      最後所做出的氧化鈦/環氧樹酯的厚膜是用MPS/GPS 改質的氧化鈦經過醋酸乙酯分散後和環氧樹酯4221 相混所做出。目前膜中經熱分析無機比例到達50wt%(估計之氧化鈦含量為45wt%)時之折射率接近1.7,約8 微米之膜在波長600nm 位置穿透度超過96%,此種具有高折射率的有機無機複合透明膜最大的缺點是用熱差分析的玻璃轉移溫度(Tg)不夠高,上述之膜之玻璃轉移溫度僅70oC,對於材料的應用將是一大限制。


      The purpose of this research is the preparation of transparent thick film or monolith with high refractive index. Titanium oxide, with a reported refractive index of 2.5 for anatase, can be a suitable inorganic additive in improving the refractive index of organic-inorganic hybrid materials. Epoxy resin, which is in common use of LED’s encapsulation. If titanium oxide and epoxy could be composited into a transparent material, the resulting product would have wide applications. To achieve such hybrid material with high refractive index and good transparency, the particle size of titanium dioxide must be below 10 nm, for otherwise light scattering effect would dominate.
      For the synthesis of nano-sized titanium dioxide, tetrachloride (TiCl4) was used as a precursor, followed by hydrolysis and condensation reactions. After washed the white titanium hydroxide gel by water, peptization and crystallization took place in acidic condition. Since peptize size is strongly dependent on the solution concentration, pH and peptizing temperature, the first part of this research was finding the optimum experimental parameters to produce the smallest nano particles dispersible in water.
      To disperse titanium dioxide in organic solvent and resin, surface modification of the particles is pivotal. Two aliphatic amines, for instance, n-hexlamine and dodecylamine were modifying agents used in this study. After surface modification with these agents, titanium dioxide can be dispersed in chloroform.
      Concurrently, surface modification was done with functional silane, 3-(Trimethoxysilyl) propyl methacrylate (MPS) and 3-Glycidoxypropyl trimethoxysilane(GPS), allowing titanium dioxide to be dispersible in ethylacetate. Having successfully dissolved titanium dioxide, epoxy resin 4221 and EP828 were added.
      The as-synthesized TiO2/epoxy thick film is formed from MPS&GPS modified TiO2 and then dispersed in ethylacetate/epoxy 4221 mixture. From thermal gravimetric analysis (TGA), the 8 micron thick film contains up to 50 wt% inorganic material (approximately 45 wt% TiO2 estimated). In addition, the refractive index is measured to be up to 1.70, and it has over 96% transmittance at 600nm wavelength. Nonetheless, such tranparent thick film has a very low glass transition temperature (~70oC), resulting in limited applications.

    摘要............................................................................................................................... I Abstract ...................................................................................................................II, III 致謝............................................................................................................................ IV 目錄................................................................................................................... V,VI,VII 圖目錄............................................................................................................. VIII,IX,X 表目錄......................................................................................................................... XI 第一章 序論................................................................................................................. 1 1-1 研究背景................................................................................................... 1 1-2 二氧化鈦材料性質及應用........................................................................ 1 1-3 環氧樹酯的簡介與性質........................................................................... 2 1-4 有機-無機混成(複合)材料....................................................................... 3 1-5 有機無機混成(複合)材料的折射率及穿透度......................................... 4 1-6 研究方向................................................................................................... 7 第二章 可分散氧化鈦奈米粒子的合成........................................................ 8 2-1 文獻回顧................................................................................................... 8 2-2 實驗藥品一覽..........................................................................................11 2-3 主要分析方式..........................................................................................11 2-4 實驗部分:水相分散氧化鈦奈米粒子的合成..................................... 13 2-4-1 酸性分散氧化鈦奈米粒子......................................................... 13 2-4-1-1 固定解膠pH 值,改變加熱溫度時間............................. 15 2-4-1-2 固定加熱時間,在較低溫下進行反應............................ 16 2-4-1-3 固定解膠pH 值,改變溶膠濃度以及超音波震盪對解膠的影響.............. 18 2-4-1-4 固定解膠溫度,改變溶膠濃度以及酸鹼值對解膠的影響.............. 18 2-4-2 中性分散氧化鈦奈米粒子......................................................... 21 2-4-2-1 延長水熱時間對於分散結晶的影響................................ 22 2-4-2-2 兩段式加熱及超音波處理對於氧化鈦粒徑及結晶的影響........................................ 23 2-5 選用的氧化鈦奈米粒子......................................................................... 26 2-5 實驗結果與討論..................................................................................... 27 第三章 氧化鈦奈米粒子表面改質與樹酯混成....................................................... 28 3-1 文獻回顧................................................................................................. 28 3-1-1 超過5 微米之厚膜..................................................................... .30 3-2 表面立體障礙之構築改質之方法.......................................................... 33 3-2-1 矽烷與金屬氧化物間的反應..................................................... 34 3-2-2 改質劑的選擇及改質方式........................................................ .38 3-2-3 研究重點.................................................................................... .39 3-3 實驗藥品................................................................................................. 40 3-4 實驗部分................................................................................................. 41 3-4-0 純樹酯的硬化............................................................................ .41 3-4-1 胺烷改質的氧化鈦/環氧樹酯有機無機複合材料.................... 41 3-4-1-1 胺烷類對氧化鈦奈米粒子進行改質................................ 42 3-4-1-2 氧化鈦奈米粒子胺烷類改質後和還氧樹酯相混合........ 45 3-4-2 矽烷改質的氧化鈦/環氧樹酯有機無機複合材料.......... 51 3-4-2-1 矽烷( MPS )對氧化鈦奈米粒子進行改質與樹酯混成測試............................................ 51 3-4-2-2 矽烷類( MPS & GPS )對氧化鈦奈米粒子進行改質與樹酯混成製作透明厚膜................... 56 3-4-2-2-1 透明有機無機複合之厚膜的製備........................ 56 3-4-2-2-2 矽烷( MPS & GPS )對氧化鈦奈米粒子改質後之重量分析........................................ 59 3-4-2-2-3 兩種矽烷( MPS & GPS )改質效果及不同比例有機無機混成膜之熱分析............... 62 3-4-2-2-4 兩種矽烷改質之有機無機混成厚膜膜厚度的決定及光學分析膜厚度的決定........... 66 第四章 結論............................................................................................................... 71 參考文獻…................................................................................................................. 73

    1. Frank W; Mont; Jong Kyu Kim; Martin F.; Schubert; Hong Luo; E.Fred Schubert; Richard W.Siegel Proceedings of SPIE 2007, 6486 64861C-1-64861C-8.
    2. Steven D.Lester; Jeffrey N.Miller; Daniel B.Roitman 5777433, 1998.
    3. 張芬如."再論二氧化鈦之特性". "塗料與塗裝技術". 46, 56-59. 1994.
    4. 吳炳佑; 陳湘林;蔣孝澈. "二氧化鈦光觸媒之製作與應用". 6, 52-68. 1997.
    5. 李桂林. "環氧樹酯與環氧塗料". 2003.
    6. 傅雅卿."高折射率環氧樹酯之合成及其物性研究"國立台灣大學碩士論文.
    2001.
    7. Lorenz Zimmennann; Martin Weibel; Walter Caseri; Ulrich W.Sute . High
    refractive index films of polymer nanocomposites. 8, 1742-1748. 1993.
    8. M.Weibel; W.Caseri; U.W.Suter; H.Kiess; E.Wehrli . Preparation of polymer
    nanocomposites with ultrahigh refractive index. 2[2], 75-80. 1991.
    9. Changli Lu; Cheng Guan; Yifei Liu; Yuanrong Cheng; Bai Yang .
    PbS/Polymer Nanocomposite Optical Materials with High Refractive Index.
    17[9], 2448-2454. 2005.
    10. Born, M.; Wolf, E. Principles of Optics 7th ed. 1999. Cambridge University
    Press: Cambridge.
    11. Caseri, W. R. Materials Science and Technology 2006, 22(7), 807-817.
    12. Wiederhoft et al.; American patent 5,840,111, 1998.
    13. Bulent E.Yoldas Journal of Materials Science 1986, Volume 21, Number 3
    1870-1092.
    14. A.Montoya, T. V. J. M. D. L. A. C. a. I. S. Catalysis Letters 1992, Volume
    15, Numbers 1-2 207-217.
    15. Hengbo Yin; Yuji Wada; Takayuki Kitamura; Takayuki Sumida; Yasuchika
    Hasegawa and Shozo Yanagida Journal of Material Chemistry 2002, 12
    74
    378-383.
    16. Juan Yang; Sen Mei and J.M.F.Ferreira Materials Science and Engineering:
    C 2001, 15(1-2), 183-185.
    17. Juan Yang; Sen Mei and Jose M.F.Ferreira Journal of Colloid and Interface
    Science 2001, 260(1), 82-88.
    18. 黃亮維 . 國立中央大學碩士論文. 2007.
    19. 周德瑜 . "四氯化鈦之控制水解研究". 國立中央大學碩士論文. 2001.
    20. Chang, C. C.; Chen, W. C. Journal of Polymer Science Part A-Polymer
    Chemistry 2001, 39(19), 3419-3427.
    21. Lee, L. H.; Chen, W. C. Chemistry of Materials 2001, 13(3), 1137-1142.
    22. Joseph Lik Hang Chau; Yu-Ming Lin; Ai-Kang Li Material Letters 2007,
    61(14-15), 2908-2910.
    23. Chen, W. C.; Liu, W. C.; Wu, P. T.; Chen, P. F. MATERIALS CHEMISTRY
    AND PHYSICS 2004, 83(1), 71-77.
    24. Lu, C. L.; Cui, Z. C.; Guan, C.; Guan, J. Q.; Yang, B.; Shen, J. C.
    Macromolecular Materials and Engineering 2003, 288(9), 717-723.
    25. Yuwono, A. H.; Liu, B. H.; Xue, J. M.; Wang, J.; Elim, H. I.; Ji, W.; Li, Y.;
    White, T. J. Journal of Materials Chemistry 2004, 14(20), 2978-2987.
    26. Kambe, N.; Blum, Y. D.; Chaloner-Gill, B.; Chiruvolua, S.; Kumar, S.;
    McQueen, D. B. 2006.
    27. Kambe, N.; Blum, Y. D.; Chaloner-Gill, B.; Chiruvolua, S.; Kumar, S.;
    MacQueen, D. B. 2003.
    28. Kambe; Nobuyuki; Blum; Yigal Do; Chaloner-Gill; Benjamin; Chiruvolu;
    Shivkumar; Kumar; Sujeet; MacQueen; David Brent 6,599,631, 2006.
    29. Kambe; Nobuyuki; Blum; Yigal Dov; Chaloner-Gill; Benjamin; Chiruvolu;
    Shivkumar; Kumar; Sujeet; MacQueen; David Brent 6,881,490, 2005.
    30. Xiong, M. N.; Zhou, S. X.; You, B.; Wu, L. M. Journal of Polymer Science
    Part B-Polymer Physics 2005, 43(6), 637-649.
    31. Du, W. C.; Wang, H. T.; Zhong, W.; Shen, L.; Du, Q. G. Journal of Sol-Gel
    75
    science and technology 2005, 34(3), 227-231.
    32. Shuhui Wu; Guangyong Zhou; Min Gu Optical Materials 2007, 29(12),
    1793-1797.
    33. Norio Nakayama; Toyoharu Hayashi Journal of Applied Polymer Science
    2007, 105(6), 3662-3672.
    34. Su, W. F.; Fu, Y. C.; Pan, W. P. Thermochimica Acta 2002, 392 385-389.
    35. 鍾寶堂 . 國立中央大學碩士論文. 2005.
    36. 陳光龍 . 國立中央大學碩士論文. 2000.
    37. W.Posthumus; P.C.M.M.Magusin; J.C.M.Brokken-Zijp; A.H.A.Tinnemans;
    R.van der Linde J.Colloid Interface Sci. 2003, (2004)(269), 109-116.
    38. Bourgeat-Lami, E.; Espiard, P.; Guyot, A. Polymer 1995, 36 4384-4389.
    39. Yang-Yen Yu; Ching-Yi Chen; Wen-Chang Chen polymer 2003, 44(3),
    593-601.
    40. Yang-Yen Yu; Wen-Chang Chen MATERIALS CHEMISTRY AND
    PHYSICS 2003, 82(2), 388-395.
    41. Zongwei Li, Y. Z. Applied Surface Science 2003, 211 315-320.
    42. Nicholas J.Turro; P.H.Lakshminarasimhan; Steffen Jockusch; Stephen
    P.O''Brien; Stephanie G.Grancharov; Franz X.Redl NANO LETTERS 2002,
    2(4), 325-328.

    QR CODE
    :::