| 研究生: |
孫文信 Wen-Shing Sun |
|---|---|
| 論文名稱: |
精調三階像差各分項目標值的鏡組優化設計 Optical lens design optimization with accuracy adjusting the target budgets of the third-order aberrations |
| 指導教授: | 張明文 |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 201 |
| 中文關鍵詞: | 眼鏡片 、遠視 、近視 、阻尼最小二乘法 、雙片鏡組 、三片鏡組 、全領域最佳值設計 |
| 外文關鍵詞: | Ophthalmic lens, Hypermetropia, Myopia, Damped least square method, Doublet, Triplet, Optimization design over full field |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將探討一種優化方法,特別著重厚透鏡的三階像差公式,做為優化過程的評價函數,並在雙片鏡組與三片鏡組的設計上,得到很好的優化效果。
論文中也探討眼鏡片的設計,由於單片眼鏡片設計優化項次的變數單純,故以柯丁登方程式作為評價依據,並按低折光率與高折光率眼鏡片分別設計。在低折光率眼鏡片設計,以斜射像散與鏡面深度對鏡面高度之二次微分值,校正鏡片像差與控制鏡面反曲點,可得比傳統鏡片,輕、薄和平的鏡片設計。高折光率眼鏡片設計,使用兩面非球面,優化目標項次為多視場斜射像散、折光率誤差與畸變,控制鏡片光學品質。
論文中厚透鏡三階像差是以形狀因子之一元三次方程式表示,我們利用優化績效函數,可控制厚透鏡三階像差至任意目標值,因此可由厚透鏡三階像差找出真實像差減少趨勢,利用此趨勢,我們完成一自動化優化程式,得出一最佳值。
為驗證優化程式效果,我們比較傳統標準鏡組設計之效果,均能得到更為優異之像差消除值。
An novel optimization algorithm for optical lens design is presented in this dissertation. The third-order aberration of a thick lens is used as the merit function in the optimization. Accordingly, we have obtained well design results in designing both of the triplet and the doublet lenses.
The study of the design of an ophthalmic lens is another topic of this dissertation. We used the Coddington''s equations as the merit functionin in designing both low-power and high-power ophthalmic lenses because only one piece of lens should be considered in design. In the low-power ophthalmic lenses design, we use the oblique astigmatic and the second derivative with respect to the height to correct lens aberration as well as control the inflection point. In comparison with the traditional ophthalmic lenses, this approach can obtain a lighter, thinner and flatter spectacle lens. In addition, the design of high-power in aspherical ophthalmic lenses is presented. Using two aspherical surfaces to control the optical lenses quality, multi-fields oblique astigmatism and oblique power error and distortion are choose as the target budgets. The minimal aberration can be obtained by optimizing the two aspherical surfaces.
The third-order aberration for a thick lens is in terms of shape factors by cubic equation with one unknown. we used the merit function to control the third-order aberrations to any target budgets. The trend for the real aberration in decreasing could be obtained by the third-order aberration of a thick lens. Finally, we develop a set of automatic optimization program to find an optimized value.
The developed optimization program has been proven to be effective. For this study, the specified aberrations of the lenses design were corrected to reach a minimum value, which was more better than those for conventional lenses design.
[1.1] M. Jalie, The Principles Ophthalmic Lenses, The Assoication of Dispensing Opticians, London (1992).
[1.2] 張弘: 幾何光學, 東華書局, 中華民國八十二年。
[1.3] H. D. Taylor, “Optical Designing as an Art,” Trans. Opti. Soc. 24, 143 (1923).
[2.1] W. J. Smith, Modern Optical Engineering, McGraw-Hill, New York (2000).
[2.2] S. F. Ray, Applied Photographic Optics, Focal Press, London (1988).
[2.3] V. N. Mahajan, Optical Imaging and Aberration, Part I : Ray Geometrical Optics, SPIE, Washington (1998).
[2.4] R. E. Fischer, B. Tadic-Galeb, Optical System Design, McGraw-Hill, New York (2000).
[2.5] 孫文信: 散光, 遠視設計暨反射面鏡光線追跡分析, 工研院光電所 研究報告, 中華民國八十一年。
[2.6] 呂光爵: 雙片透鏡之系列設計, 輔仁大學物理研究所碩士論文,中 華民國七十五年。
[2.7] R. R. Shannon, The Art and Science of Optical Design, Cambridge, New York (1997).
[2.8] 林遠紹: 三片鏡組的設計方法, 輔仁大學物理研究所碩士論文, 中 華民國七十二年。
[3.1] W. T. Welford, Aberrations of the Symmetrical Optical Symstem, Academic Press, London (1974).
[3.2] D. Malacara and Z. Malacara, Handbook of Lens Design, Marcel Dekker, New York (1994).
[4.1] 孫文信: 以形狀因子為變數之鏡片透鏡法, 輔仁大學物理研究所碩 士論文, 中華民國七十六年。
[4.2] 常群: 光學設計文集, 科學出版社, 北京(1976)。
[4.3] D. P. Feder, “Automatic Optical Design,” Appl. Opt. 2, 1209-1226 (1963).
[4.4] C. G. Wynne and P. M. J. H. Worme, “Lens Design by Computer,” Appl. Opt. 2, 1233-1238 (1963).
[4.5] G. H. Spencer, “A Flexible Automatic Lens Correction Procedure,” Appl. Opt. 2, 1257-1264 (1963).
[4.6] J. Meriron, “Damped Least-Squares Method for Automatic Lens Design,” J. Opt. Soc. Am. 55, 1105-1109 (1965).
[4.7] J. H. Jamieson, Optimization Techniques in Lens Design, American Elsevier, New York (1971).
[5.1] M. W. Chang, W. S. Sun, and C. L. Tien, “The Design of Ophthalmic Lens by Using Optimized Aspheric Surface Coefficients,” Proc. SPIE 3482, 634-646 (1998).
[5.2] W. S. Sun, C. L. Tien, C. C. Sun, M. W. Chang and H. Chang, “Ophthalmic Lens Design with the Optimization of the Aspherical Coefficients,” Opt. Eng. 39, 978-988 (2000).
[5.3] M. Katz, “Aspherical Surfaces Used to Minimizeoblique Astigmatic Error, Power Error, and Distortion of some High Positive and Negative Power Ophthalmic Lenses,” Appl. Opt. 21, 2982- 2991 (1982).
[5.4] D. A. Atchison, “Spectacle Lens Design : A Review,” Appl. Opt. 31, 3579-3585 (1992).
[5.5] M. Jalie, Ophthalmic Spectacle Lenses Having a Hyperbolic Surface, U. S. Patent 4289387 (1981).
[5.6] W. S. Sun, H. Chang, C. C. Sun, M. W. Chang, C. H. Lin, and C. L. Tien, “The Designing of High Power Aspherical Ophthalmic Lens With a Reduced Error Budget,” Opt. Eng. 41, Jan. (2002).
[6.1] W. S. Sun, H. Chang, C. C. Sun, M. W. Chang, and C. L. Tien, “ Improved Optimization Method for Designing a Doublet Lens,” Proc. SPIE 4442, 146-155 (2001).
[6.2] R. Kingslake, Lens Design Fundamentals, Rochester, New York, P131, (1980).
[7.1] W. S. Sun, H. Chang, C. C. Sun, M. W. Chang, and C. L. Tien, “Design of a Cooke Triplet by Optimization Technique,” Proc. SPIE 4442, 135-145 (2001).
[7.2] R. Kingslake, Lens Design Fundamentals, Rochester, New York, P293, (1980).