跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾致舜
Zh-Shun Zen
論文名稱: Pseudomonas putida SH1之鄰苯二酚加氧酵素基因分析
指導教授: 黃雪莉
Shir-Ly Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
畢業學年度: 89
語文別: 中文
論文頁數: 67
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 油、石化工業所生產的苯環化合物,卻造成了環境的污染。目前已知環境
    ㆗許多細菌具有分解苯環類化合物的能力。本實驗室從台灣本土受石油污
    染㆞區篩選出㆒株可分解(naphthalene)、酚(phenol)、和㆙酚(cresols)
    等芳香類化合物之分解菌 Pseudomonas putida SH1。當我們以不同的苯環
    化合物為唯㆒碳源培養 P. putida SH1,已純化出㆕種苯環切割(aromatic
    ring- cleavage dioxygenases),其皆具鄰苯㆓酚加氧之活性。在生化特性及
    N 端胺基酸序列㆖顯示㆕個為不同之,由所誘發生成之 catechol
    2,3-dioxy- genase (簡稱C23O) 命名為 C23O nap(SH1),由酚誘發的有兩個
    分別為 C23OpheI(SH1)及 C23OpheII (SH- 1),而以鄰-㆙酚為唯㆒碳源生
    長時 P. putida SH1 可生成另㆒個C23O,命名為 C23Oo-cre(SH1)。
    由 N 端胺基酸序列的結果,我們以其他已知之 C23Os 基因核酸
    序列具高相似度的片段設計成引子,以聚合連鎖反應選殖 P. putida SH1
    ㆗不同 C23Os 的基因,所得具有活性之基因均為同㆒個;我們也曾利用
    DNA Library 的方式藉以篩選出其他 C23O 的基因,但㆒直無法篩選出
    其他 C23O 的基因。因此我們利用親源演化樹分析現有鄰苯㆓酚加氧酵
    素的核酸序列並依其序列相似度將其㆗的㆔十個序列分為㆔個家族,分別
    為 G1、G2 及 G3。我們發現 P. putida SH1 ㆗㆕個 C23Os 的 N 端序
    列與 G2 家族成員較為接近,但另有文獻指出 C23O 的 N 端與 C 端
    domain 可能有不同的演化來源,因此對這兩家族成員進行序列比對,以
    設計出能區分不同來源基因的引子,對 P. putida SH1 的鄰苯㆓酚加氧酵
    素基因進行分析,從 RT-PCR 的結果㆗我們發現以為唯㆒碳源生長時
    所表現的 C23O 基因確定為本實驗室已選殖到之 C23O 基因,而以酚、
    鄰㆙酚為唯㆒碳源生長時以 RT-PCR 所得產物經定序後顯示其序列與已
    選殖到的基因有所不同,這可能與基因複製(duplication)與融合(fusion)
    有關。



    industry were widespread and were important pollutants in the
    environment. Microorganisms play a major role in the breakdown and
    mineralization of these pollutants. Pseudomonas putida SH1 was isolated
    from a contaminated soil in Taiwan. It was shown that this strain was
    capable to use naphthalene, phenol, o-cresol, m-cresol, p-cresol, pyrene,
    and phenanthrene as its sole source of carbon to grow. Extradiol
    dioxygenases, catechol 2,3-dioxygenases (C23Os), involved in the
    cleavage of aromatic ring were induced when the bacterium was grew in
    minimal salts basal medium containing individual aromatic compound.
    From our previous study, four of them werepurified and characterized
    namely C23Os as C23Onap(SH1), C23O pheI(SH1), C23OpheII(SH1)
    and C23Oo-cre(SH1). Polymerase chain reaction primers derived from
    the conserved sequence of three known C23O genes we used for the
    cloning of C23Os from P. putida SH1, but we can’t clone another genes
    differ to our previous cloned gene.
    In this study, we design two sets of PCR primers based on
    phylogenetic analysis and sequence alignment of 45 full-length catechol
    2,3-dioxygenase sequences. Although these four C23Os had similar
    N-terminal sequences but two different PCR products show they can be
    divided into two types. We also analysis 101 extradiol dioxygenase use
    kitsch and neighbor-joining methods the result as same as pervious study.

    目錄---------------------------------------------------------------------------------------I 圖目錄----------------------------------------------------------------------------------III 表目錄----------------------------------------------------------------------------------IV 壹、緒論---------------------------------------------------------------------------------1 ㆒、前言-------------------------------------------------------------------------------1 ㆓、芳香族化合物之代謝途徑---------------------------------------------------2 ㆔、鄰苯㆓酚加氧酵素之特性---------------------------------------------------3 ㆕、苯環開環酵素之親緣關係---------------------------------------------------5 五、研究動機與目的---------------------------------------------------------------8 貳、材料與方法 ㆒、 微生物培養-----------------------------------------------------------------11 ㆓、 細菌核酸之製備-----------------------------------------------------------13 ㆔、 蛋白質與核酸序列及親源分析-----------------------------------------15 ㆕、 聚合鏈反應--------------------------------------------------------------17 五、 反轉錄反應-----------------------------------------------------------------18 六、 南方雜交法-----------------------------------------------------------------20 七、 藥品--------------------------------------------------------------------------24 八、 儀器設備--------------------------------------------------------------------25 參、實驗結果-------------------------------------------------------------------------27 ㆒、 鄰苯㆓分雙加氧酵素之序列與親源分析------------------------------27 ㆓、 Extradiol dioxygenase 之親源分析-------------------------------------28 ㆔、 以反轉錄反應探討 P. putida SH1 以不同碳源培養㆘鄰苯㆓酚加 氧酵素之表現---------------------------------------------------------------29 ㆕、 以特異性引子探討 P. putida SH1 ㆗不同的鄰苯㆓酚加氧酵素 ---------------------------------------------------------------------------------30 肆、討論-------------------------------------------------------------------------------32 伍、參考文獻-------------------------------------------------------------------------37 圖----------------------------------------------------------------------------------------44 II 表----------------------------------------------------------------------------------------62

    林春志. 1997. Pseudomonas putida SH1 分解芳香族化合物之研究. 國立
    ㆗央大學生命科學研究所碩士論文.
    楊壁如. 1997. 鄰苯㆓酚加氧酵素的基因選殖與分析. 國立㆗央大學生命
    科學研究所碩士論文.
    姜福慧. 1998. Pseudomonas putida SH1 ㆗鄰苯㆓酚加氧酵素的純化與特
    性分析. 國立㆗央大學生命科學研究所碩士論文.
    李祖霖. 1998. Pseudomonas putida SH1 ㆗鄰苯㆓酚加氧酵素的純化與特
    性分析(II). 國立㆗央大學生命科學研究所碩士論文.
    羅淑如. 1999. Pseudomonas putida SH1 ㆗誘發苯環化合物代謝之研究.國
    立㆗央大學生命科學研究所碩士論文.
    許原彰. 2000. 溫度對於 Pseudomonas putida SH1 鄰苯㆓酚加氧酵素之
    活性與結構的效應. 國立㆗央大學生命科學研究所碩士論文.
    林美鳳. 2000. 建立苯環化合物分解菌㆗苯環加氧與切割之基因偵測法.
    國立㆗央大學生命科學研究所碩士論文.
    Barkay, T. and H. Pritchard. 1988. Adaptation of aquatic microbial
    communities to pollutant stress. Microbiol. Sci. 47:165-169
    Beacham, I. R. 1987. Silent genes in Prokarytes. FEMS Microbiol. Rev.
    46:409-417
    Bergdoll, M., L. D. Eltis, A. D. Cameron, P. Dumas, and J. T. Bolin. 1998.
    All in the family: structural and evolutionary relationships among three
    38
    modular proteins with diverse functions and variable assembly. Protein
    Sci. 7:1667-1670.
    Broderick, J. B. 1999. Catechol dioxygenases. Essay. Biochem.
    34:173-189
    Caldwell, D. R. 1995. Catabolic metabolism. p. 83-115. In microbial
    physiology and metabolism. D. R. (ed.), Caldwell, W. C. Brown
    Communications. Inc., U. S. A.
    Cerniglia, C. E. and M. A. Heitkamp. 1989. Microbial degradation of
    polycyclic aromatic hydrocarbons (PAH) in the aquatic environment.
    p.41-68. In Metabolism of Polycyclic Aromatic Hydrocarbons in the
    Aquatic Environment. CRC Press, Boca Raton, FL.
    Coulter, E. D. and D. P. Ballou. 1999. Non-haem iron-containing oxygenases
    involved in the microbial biodegradation of aromatic hydrocarbons.
    Essays. Biochem. 34:31-49
    Eltis, L. D. and J. T. Bolin. 1996. Evolutionary relationships among extradiol
    dioxygenase. J. Bacteriol. 17:5930-5937.
    Felsenstein, J. 1993. PHYLIP(Phylogeny Inference Package), version 3.5c.
    Department of Genetics, University of Washington, Seattle.
    Fitch, W. M., and E. Margoliash. 1967. Construction of phylogenetic trees.
    Science 155:279-284
    Fujiwara, M., L. A. Golovleva, Y. Saeki, M. Nozaki, and O. Hayaishi.
    1975. Extradiol cleavage of 3-substituted catechols by an intradiol
    dioxygenase, pyrocatechase, from a Pseudomonad. J. Biol. Chem.
    250:4848-4855
    Furukara, K., N. Arimura, and T. Miyazaki. 1987. Nucleotide sequence of
    the 2,3-dihydroxybiphenyl dioxygenase gene of Pseudomonas pseud39
    oalacligenes. J. Bacteriol. 169:427-429.
    Ghosal, D., I. S. You, and I. C. Gunsalus. 1987. Nucleotide sequence and
    expression of gene nahH of plasmid NAH7 and homology with gene xylE
    of TOL pWWO. Gene. 55:19-28.
    Hall, T. 2001. BioEdit, version 5.0.9. Department of Microbiology, North
    Carolina State University, Raleigh.
    Harayama, S., and M. Kok. 1992. Functional and evolutionary relationships
    among diverse oxygenases. Annu. Rev. Microbiol. 46:565-601.
    Harayama, S., and M. Rekik. 1989. Bacterial aromatic ring-cleavage
    enzymes are classified into two different gene families. J. Biol. Chem.
    264:15328-15333
    Han, S., L. D. Eltis, H. Poth, R. Hedderich, and K. N. Timmis. 1995.
    Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a
    PCB-degrading pseudomonas. Science. 270:976-980.
    Hartnett, C., E. L. Neidle, K. L. Ngai, and L. N. Ornsion. 1990. DNA
    sequences of genes encoding Acinetobacter calcoaceticus protocatechuate
    3,4-dioxygenase: evidence indicating shuffling of genes and
    DNA sequences within genes during their evolutionary diver- gence. J.
    Bacteriol. 172:956-966.
    Hayaishi, O., and Z. Hashimoto. 1950. Pyrocatechase. A new enzyme
    catalyzing oxidative breakdown of pyrocatechin. J. Biochem.
    37:317-374.
    Holliger, C. and A. J. Zehnder. 1996. Anaerobic biodegradation of
    hydrocarbons. Curr. Opin. Biotechnol. 7:326-30
    Kirvisaar, M., L. Kasak, and A. Nurk. 1991. Sequence of the
    plasmid-encoded catechol 1,2-dioxygenase-expressing gene, pheB, of
    40
    phenol-degrading Pseudomonas sp. Strain EST1001. Gene. 98:15-20
    Korte, F., Kvesitadze, G., Ugrekhelidze, D., Gordeziani, M., Khatisashvili,
    G., Buadze, O., Zaalishvili, G., and F. Coulston. 2000. Organic
    toxicants and plants. Ecotoxicol Environ. Saf. 47:1-26.
    Lee, Tsu-Lin, Fu-Hui Chiang and Shir-Ly Huang. 1998. Characteri- zation
    of three catechol 2,3-dioxygenases from Pseudomonas putida SH1.
    Abstract of the 32nd Annual Meeting of The Chinese Society of
    Microbiology. pp.75.
    Lee, Tsu-Lin, Yuan-Chang Hsu and Shir-Ly Huang. 1999. Characterization
    of four catechol 2,3-dioxygenases from Pseudomonas putida SH1.
    Abstract of the 33rd Annual Meeting of the Chinese Society of
    Microbiology. pp.68.
    Lin, C. C., F. H. Chiang, and S. H. Huang. 1997. Microbiological and
    biochemical studies of novel aromatic hydrocarbon-degrading Pseudomonas.
    Abstract of the Twelfth Joint Annual Conference of Biomedical
    Sciences. p.239. Apr. 19-20.
    Lipscomb, J. D., and A. M. Orville. 1992. Mechanistic aspects of dihydroxybenzoate
    dioxygenase. Met. Inos. Biol. Syst. 28:243-298
    Ludwig, M. L., L. D. Weber., and D. P. Ballou. 1984. Characterization of
    crystals of protocatechuate 3,4-dioxygenase from Pseudomonas cepacia.
    J. Biol. Chem. 259:14840-14842.
    Nakai, C., K. Hori, H. Kagamiyama, T. Nakazawa, and M. Nozaki. 1983.
    Purification, subunit structure, and partial amino acid sequence of metapyrocatechase.
    J. Biol. Chem. 258:2916-2922.
    Negoro, S., S. Nakamura, and H. Okada. 1984. DNA-DNA hybridiza- tion
    analysis of nylon oligomer-degradative plasmid pOAD2: identification of
    41
    the DNA region analogous to the nylon oligomer degradation gene. J.
    Bacteriol. 158:419-424
    Neidle, E. L., C. Hartnett, S. Bonitz, and L. N. Ornston. 1988. DNA
    sequence of the Acintobacter calcoaceticus catechol 1,2-dioxygenase I
    structural gene catA: evidence for evolutionary divergence of intradiol
    dioxygenases by acquisition of DNA sequence repetitions. J. Bacteriol.
    170:4874-4880.
    Nozaki, M., K. Ono, T. Nakazawa, S. Kotani, and O. Hayaishi. 1968.
    Metapyrocatechase J. Biol. Chem. 243:2682-2690.
    Nozaki, M., T. Kagamiyama, and O. Hayaishi. 1963. Metapyrocatech- ase I.
    Purification, crystallization and some properties. Biochemische
    Zeitschrift 338:582-590.
    Ohlendorf, D. H., J. D. Lipscomb, and P. C. Weber. 1988. Structure and
    assembly of protocatechuate 3,4-dioxygenase. Nature(London) 336:403-
    405.
    Olson, P. E., B. Qi, L. J. Que, L. P. Wackett. 1992. Immunological demonstration
    of a unique 3,4-dihydroxyphenylacetate 2,3-dioxygenase in soil
    Arthrobacter strains. Appl. Environ. Microbiol. 58:2820-2826.
    Perkins, E. J., M. P. Gordon, O. Caceres, and P. F. Lurquin. 1990.
    Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase
    and chlorocatechol oxidative operons of plasmid pJP4. J. Bacteriol.
    172:2351-2359
    Patel, R. N., C. T. Hou, A. Felix, and M. O. Lillard. 1976. Catechol 1,2-
    dioxygenase from Acinetobacter calcoaceticus: purification and properties.
    J. Bacteriol. 127:536-544.
    Powlowski, J. and V. Shingler. 1994. Genetics and biochemistry of phenol
    42
    degradation by Pseudomonas sp. CF600. Biodegradation 5:219-36
    Que, L. J., J. Widom, R. L. Crawford. 1981. 3,4-Dihydroxyphenylacetate
    2,3-dioxygenase: a manganese(II) dioxygenase from Bacillus brevis. J.
    Biol. Chem. 256:60-74.
    Sanda, T., K. Sugiyama, H. Narita, T. Yamamoto, K. Kimbara, M.
    Fukuda, M. Sato, K. Yano, and Y. Mitsui. 1996. Tree-dimensional
    structures of free from and two substrate complexes of an extradiol ringcleavage
    type dioxygenase, the BphC enzyme form Pseudomonas sp.
    Strain KKS102. J. Mol. Biol. 255:735-752
    Shannon, M. J. R. and R. Unterman. 1993. Evaluating bioremediation:
    distinguishing fact from fiction. Ann. Rev. Microbiol. 47:715-738.
    Smith M. R. 1990. The biodegradation of aromatic hydrocarbons by bacteria.
    Biodegradation 1:191-206.
    Stanier, R. Y., G. Cohen-Bazire, and W. R. Sistrom. 1957. Kinetics studies
    of pigment synthesis by non-sulfur purple bacteria. J. Cell. Comp.
    Physiol. 49:25.
    Suda, M., K. Hashimoto, H. Matsuoka, and T. Kamahora. 1951. J.
    Biochem(Tokoy). 38:289.
    Taira, K., N. Hayase, N. Arimura, S. Yamashita, T. Miyazaki, and K.
    Furukawa. 1988. Cloning and nucleotide sequence of the 2,3-dihydroxybiphenyl
    dioxygenase gene from the PCB-degrading strain of Pseudomonas
    paucimobilis Q1. Biochemistry 27:3990-3996.
    Thompson, J. D., D. G. Higgins, and J. T. Gibson. 1994. CLUSTAL W:
    improving the sensitivity of progressive multiple sequence weighting,
    positions-specific gap penalties and weight matrix choice. Nucleic. Acid.
    Res. 22:4673-4680
    43
    True, A. E., A. M. Orville, L. L. Pearce. J. D. Lipscomb, and L. Que. 1990.
    An EXAFS study of the interaction of substrate with the ferric active site
    of protocatechuate 3,4-dioxygenase. Biochemistry. 29: 10847-10854
    Van der Meer, J. R., W. M. de Vos, S. Harayama, and A. J. B. Zehnder.
    1992. Mplecular mechanisms of genetic adaptation to xenobiotic compounds.
    Microbiol. Rev. 56:677-694
    Van der Meer, J. R., R. I. L. Eggen, A. J. B. Zehnder, and W. M. de Vos.
    1991.Sequence analysis of the Pseudomonas sp. Strain P51 tcb gene
    cluster, which encodes metabolism of chlorinated catechols: evidence for
    specialization of catechol 1,2-dioxygenase for chlorinated substrate. J.
    Bacteriol. 173:2425-2434
    Yen, K. M., and I. C. Gunsalus. 1985. Regulation of naphthalene catabolic
    genes 0f plasmid NAH7. J. Bacteriol. 162:1008-1013.
    Zylstra, G. J., and D. T. Gibson. 1989. toluene degradation by Pseudomonas
    putida F1. J. Bio. Chem. 264:14940-14946.

    QR CODE
    :::