跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭凱云
Kai-yun cheng
論文名稱: 光電化學產氫反應器之熱流特性分析
Thermal-Fluid Analysis of Photoelectrochemical Hydrogen Production Reactor
指導教授: 曾重仁
Chung-jen Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 89
中文關鍵詞: 反應器設計數值模擬分析太陽能產氫光電化學反應器
外文關鍵詞: solar hydrogen production, photo-electrochemical method, reactor design, numerical simulation.
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分析光電化學反應器內的熱傳與流場特性,並探討反應器設計對熱流特性與產氫效率的影響。使用ANSYS FLUENT套裝軟體作為數值分析的工具。主要研究的參數有反應器的幾何外型與熱傳機制設計、光電極材料能隙、照光密度與量子效率。模型中並考慮AM 1.5的太陽光照射進入反應器後,與玻璃、水及各壁面的輻射特性交互作用。
    研究結果顯示,使用方形反應器於照光密度4000 W/m2、量子效率 30 %的條件下,若僅使用短波能量產氫,對應1.5 eV、2.0 eV、2.5 eV和3.0 eV的光電極之理論產氫量分別為251 L/m2-hr、150 L/m2-hr、73 L/m2-hr及25 L/m2-hr;若加入分光機制,有效地利用長波和短波中因量子效率無法用於產氫的能量,將之利用加熱反應器降低分解電位;在case 3的絕熱材加玻璃反應器設計將可提升產氫量至271 L/m2-hr、161 L/m2-hr、79 L/m2-hr及27 L/m2-hr。而理論產氫效率可由22 %、13 %、6.5 %及2.23 %,於case 3中可提升至24 %、14 %、7 %及2.4 %。


    The design of a photo-electrochemical (PEC) reactor is very important; it affects the energy transportation and the hydrogen production rate. In this study, the thermal and fluid flow characteristics of a PEC reactor are investigated. Using ANSYS FLUENT as a tool, the effects of the reactor design, material properties, energy bandgap of the photo-electrode, incident solar intensity, and the quantum efficiency on the thermal-fluid characteristics and the hydrogen production efficiency of are studied and discussed.
    Results show that, for a rectangular glass reactor with 4000 W/m2 incident solar intensity, 30 % quantum efficiency, only the short wavelength energy, the hydrogen production rate is 251 L/m2-hr, 150 L/m2-hr, 73 L/m2-hr and 25 L/m2-hr respectively for 1.5 eV, 2.0 eV, 2.5 eV and 3.0 eV bandgap photoanodes. On the other hand, using the long wavelength energy to heating the reactor and lowering the water dissociation energy, and with the case 3 reactor design, the hydrogen production rate can be increased to 271 L/m2-hr, 161 L/m2-hr, 79 L/m2-hr and 27 L/m2-hr, respectively. The corresponding solar-to-hydrogen efficiencies are increased from 22 %, 13 %, 6.5 %, and 2.23 % to 24 %, 14 %, 7 % and 2.4 %.

    摘要 i Abstract ii 致謝 iv 目錄 v 圖目錄 vii 表目錄 xiv 符號表 xv 第一章 序論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1光電化學產氫原理 2 1.2.2 熱力學分析 9 1.2.3 光反應器 10 1.2.4輻射特性與太陽輻射能量 11 1.3研究動機與內容 14 第二章 理論分析 15 2.1 光電化學反應器模型 15 2.2基本假設 17 2.3數學模式 17 2.3.1統御方程式 17 2.3.2 輻射傳輸方程式-離散座標法 19 2.4邊界條件 20 第三章 數值方法 23 3.1 SIMPE演算法則 23 3.2數值方法之驗證 26 3.2.1網格數獨立性測試 27 3.2.2立體角數量獨立性測試 28 第四章 結果與討論 29 4.1 光電極材料對產氫的影響 29 4.2不同反應器設計之熱傳現象 33 4.3 照光密度對產氫的影響 36 4.4 幾何外型對產氫的影響 37 第五章 結論與未來展望 40 參考文獻 84

    [1 ] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, Vol. 238, pp. 37-38, 1972.
    [2 ] 莊浩宇、陳東煌,「取之不盡太陽能光電化學反應」,科學發展,437期,國科會,2009。
    [3 ] T. G. Deutsch, “Photoelectrochemical production of hydrogen”, NREL, September 22, 2008.
    [4 ] K. Maeda and K. Domen, “Photocatalytic water splitting: recent progress and future challenges”, The Journal of Physical Chemistry Letters, 2010.
    [5 ] M. Grazel, “Photoelectrochemica cells”, Nature, Vol 414, November, 2001.
    [6 ] K. T. Jeng, Y. C. Liu, Y. F. Leu, Y. Z. Zeng and J. C. Chung, “Membrane electrode assembly-based photoelectrochemical cell for hydrogen generation”, International Journal of Hydrogen Energy, Vol. 35, pp. I0890- I0897, 2010.
    [7 ] J. Nowotny, T. Bak, M. K. Nowotny and L. R. Sheppard, “Titanium dioxide for solar-hydrogen I. function properties”, International Journal of Hydrogen Energy, Vol. 32, pp. 2609-2629, 2007
    [8 ] T. Bak, J. Nowotny, M. Rekas and C.C. Sorrell, “Photoelectrochemica hydrogen generation from water using solar energy Materials-related aspects”, International Journal of Hydrogen Energy, pp. 991-1022, 2002.
    [9 ] V. Urade, “Photoelectrochemical generation of hydrogen”, http://atom.ecn.purdue.edu/%7Evurade/PEC%20Generation%20of%20Hydrogen/Main01.htm
    [10 ] J. Nie, Y. Chen, R. F. Boehm and S. Katukota, “A photoelectrochemical model of proton exchange water electrolysis for hydrogen prodrction”, Journal of Heat Transfer, Vol. 130, pp. 042409-1-6, 2011.
    [11 ] L. Minggu, W. Ramli W. Daud and M. B. Kassim, “An overview of photocells and photoreactors for photoelectrochemical water splitting”, International Journal of Hydrogen Energy, Vol 35, pp. 5233-5244, 2010.
    [12 ] T. Bak, J. Nowotny, M.Rekas, and C. C. Sorrell, “Photo-electrochemical properties of the TiO2-Pt system in aqueous solutions”, International Journal of Hydrogen Energy, Vol.27, pp. 19-26, 2002.
    [13 ] J.G. Mavroides, D.I. Tchernev, J.A. Kafalas and D.F. Kolesar, “Photoelectrolysis of water in cell with TiO2 anodes”, Materials Reserch Bulletin, Vol. 10, pp. 1023-1030, 1975.
    [14 ] O. Khaselev and J.A. Turner, “A monolithic photo-voltaic photo-electrochemical device for hydrogen production via water splitting”, Science, Vol. 280, pp. 425-427, 1988.
    [15 ] S. Licht, B Wang, S. Mukerji, T. Soga, M. Umeno and H. Tributsch, “Efficient solar water splitting, Exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis”, The Journal of Physical Chemistry B, Vol. 104, pp. 8920-8924, 2000.
    [16 ] V. K. Mahajan, S. K. Mohapatra and M. Misra, “Stability of TiO2 nanotube arrays in photoelectrochemical studies”, International Journal of Hydrogen Energy, vol. 33, pp. 5369-5374, 2008.
    [17 ] S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno and H. Tributsch, “Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting”, International Journal of Hydrogen Energy, Vol. 26, pp. 653-659, 2001.
    [18 ] S. Licht, “Efficient solar generation of hydrogen fuel – a fundamental analysis”, Electrochemistry Communications, Vol. 4, pp. 790-795, 2002.
    [19 ] S. Licht, “Solar water splitting to generate hydrogen fuel – a photothermal electrochemical analysis”, International Journal of Hydrogen Energy, Vol. 30, pp. 459-470, 2002.
    [20 ] C.J. Tseng, C.L. Tseng, L.W. Hong and J.C. Chen, “Heat transfer analysis of photoelectrochemical hydrogen generation reactor”, Asian Symposium on Computational Heat Transfer and Fluid Flow, 2007.
    [21 ] C.J. Tseng and C.L. Tseng, “The reactor design for photo-electrochemical hydrogen production”, International Journal of Hydrogen Energy, 2011.
    [22 ] C.L. Tseng, C.J. Tseng and J.C. Chen, “Thermodynamic analysis of a photoelectrochemical hydrogen production system”, International Journal of Hydrogen Energy, Vol. 35, pp. 2781-2785, 2010.
    [23 ] C. Carver, Z. Ulissi, C. K. Ong, S. Dennison, G. H. Kelsall, K.Hellgardt, “Modeling and development of photoelectrochemical reactor for H2 production”, International Journal of Hydrogen Energy, pp. I-I3, 2011.
    [24 ] M. Ni, M. K. H. Leung, D. Y. C. Leung, K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production”, Renewable and Sustainable Energy Reviews, Vol. 11, pp. 401-425, 2007.
    [25 ] N.A. Kelly and T.L. Gibson, “Solar energy concentrating reactors for hydrogen production by photoelctrochemical water splitting”, International Journal of Hydrogen Energy, Vol.33, pp. 6420-6431, 2008.
    [26 ] C.C Lo, C.W. Huang, C.H. Liao and J.C.S. Wu, “Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting”, International Journal of Hydrogen Energy, Vol. 35, pp. 1523-1529, 2010.
    [27 ] 曾家麟和曾重仁,光電化學法產氫反應器之設計與熱流特性分析,國立中央大學機械工程研究所博士論文,中壢, 2011。
    [28 ] M. F. Modest, Radiative heat transfer, Academic Press, New York, 2003.
    [29 ] S. V. Patankar, Numerical heat transfer and fluid flow, Hemisphere, Washington, 1980.
    [30 ] M.L. Williams, A.Yucel and S. Acharya, “Natural convection and radiation in a square enclosure”, Numerical Heat Trandfer Part A, Vol. 15, pp. 261-278, 1989.

    QR CODE
    :::