| 研究生: |
陳崇毅 Chong-Yi Chen |
|---|---|
| 論文名稱: |
預測有機物與二氧化碳雙成份系統之固液氣三相平衡 Prediction of solid-liquid-gas equilibrium for binary mixtures of carbon dioxide + organic compounds |
| 指導教授: |
謝介銘
Chieh-Ming Hsieh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 固液氣三相平衡 、二氧化碳 |
| 外文關鍵詞: | solid-liquid-gas equilibrium, MHV1 mixing rule |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
固液氣三相平衡數據為優化或決定超臨界製程中最佳操作條件的關鍵因素之一,在此研究中蒐集了近四十年來的文獻,總共21 種有機物在二氧化碳的雙成分系統,此研究的主軸以Peng-Robinson 狀態方程式為主,接著選擇了兩種過剩自由能為基礎的混合律分別為MHV1 及Wong-Sandler (WS)混合律,搭配兩種活性係數模型分別為COSMO-SAC(2002) 及COSMO-SAC(2010) , 最後部分為PR+COSMOSAC 狀態方程式兩種版本,總共探討六種方法的結果。在這六種方法中以PR+COSMOSAC 狀態方程式(2015)及PR+MHV1+COSMOSAC(2010)所得到
固液氣三相平衡溫度的誤差為最小分別為6.25 K 及6.53 K,同時在固液氣三相平衡的液相莫爾分率之分析上也是這兩種方法表現最佳,PR+COSMOSAC 狀態方程式(2015)及PR+MHV1+COSMOSAC(2010)的誤差分別為0.07 及0.10。雖然兩者的誤差非常的接近,但此兩種分法對於每一種類的有機物的結果卻大不相同,將其利用其主官能基細分成每一種類並深入探討,會發現每一種方法對特定種類的有機物各有千秋。最後並探討有機物質之固相體積對預測精確度的影響。
The knowledge of the solid–liquid–gas equilibrium (SLGE) for binary mixtures of organic compounds in CO2 is one of the key information determine the best operation condition for many supercritical fluid processes. In this work, the SLGE of 21 organic compounds in carbon dioxide is calculated from six approaches based on Peng-Robinson equation of state (PR EOS) and the COSMO-SAC models. These methods include two versions of PR+COSMOSAC EOS and combining PR EOS with MHV1 or Wong-Sandler (WS) mixing rules and two versions of COSMO-SAC models. The PR+COSMOSAC(2015) and PR+MHV1+COSMOSAC(2010) provide the lowest overall absolute average deviation in temperature (AAD-T), which are 6.23 K and 6.37 K, respectively, and the overall absolute average deviation in SLGE liquid phase composition prediction from the PR+COSMOSAC EOS(2015) and PR EOS+MHV1+COSMO-SAC(2010), which are 0.07 and 0.10 respectively. Although the overall deviations are similar, their prediction results can be very different for substances in different families of chemicals, and it can be found clearly each method is good at specific families of chemicals. In the last part, the effect of experimental solid volumes of organic compounds in SLGE prediction accuracy is investigated.
[1] P. L. Cheong, D. Zhang, K. Ohgaki, B. C. Y. Lu, “High pressure phase equilibria for binary systems involving a solid phase ”, Fluid Phase Equilib, Vol 29, 555-562, 1986.
[2] D. J. Fall, K. D. Luks, “Phase equilibria behavior of the systems carbon dioxide + n-dotriacontane and carbon dioxide + n-docosane ”, J. Chem. Eng. Data, Vol 29, 413-417, 1984.
[3] D. J. Fall, J. L. Fall, K. D. Luks, “Liquid-Liquid-Vapor immiscibility limits in carbon dioxide + n-paraffin mixtures ”, J. Chem. Eng. Data, Vol 30, 82-88, 1985.
[4] N. C. Huie, K. D. Luks, J. P. Kohn, “Phase-equilibriums behavior of systems carbon dioxide-n-eicosane and carbon dioxide-n-decane-n-eicosane ”, J. Chem. Eng. Data, Vol 18, 311-313, 1973.
[5] S. Yamamoto, K. Ohgaki, T. Katayama, “High-pressure phase behavior of eight binary mixtures of pyrimidine or pyrazine with carbon dioxide, ethylene, ethane or fluoroform ”, J. Chem. Eng. Data, Vol 35, 310-314, 1990.
[6] H. Uchida, T. Kamijo, “Measurement and correlation of the solid−liquid−gas equilibria for carbon dioxide + octadecanoic acid (stearic acid) and carbon dioxide + 1-octadecanol (stearyl alcohol) systems ”, J. Chem. Eng. Data, Vol 55, 925-929, 2010.
[7] C. L. Patton, K. D. Luks, “Multiphase equilibria of the binary mixture xenon + 1-decanol ”, Fluid Phase Equilib, Vol 98, 201-211, 1994.
[8] H. Uchida, M. Yoshida, Y. Kojima, Y. Yamazoe, M. Matsuoka, “Measurement and correlation of the solid−liquid−gas equilibria for the carbon dioxide + S-(+)-ibuprofen and carbon dioxide + RS-(±)-ibuprofen systems ”, J. Chem. Eng. Data, Vol 50, 11-15, 2005.
[9] K. Fischer, M. Wilken, J. Gmehling, “The effect of gas pressure on the melting behavior of compounds ”, Fluid Phase Equilib, Vol 210, 199-214, 2003.
[10] K. Fukné-Kokot, A. König, Ž. Knez, M. Škerget, “Comparison of different methods for determination of the S–L–G equilibrium curve of a solid component in the presence of a compressed gas ”, Fluid Phase Equilib, Vol 173, 297-310, 2000.
[11] M. Škerget, L. Čretnik, Ž. Knez, M. Škrinjar, “Influence of the aromatic ring substituents on phase equilibria of vanillins in binary systems with CO2 ”, Fluid Phase Equilib, Vol 231, 11-19, 2005.
[12] H. Uchida, T. Kamijo, “Measurement and correlation of the solid–liquid–gas equilibria for carbon dioxide + normal chain saturated aliphatic hydrocarbon systems ”, J. Supercrit. Fluids, Vol 51, 136-141, 2009.
[13] E. Pérez, A. Cabañas, Y. Sánchez-Vicente, J. A. R. Renuncio, C. Pando, “High-pressure phase equilibria for the binary system carbon dioxide + dibenzofuran ”, J. Supercrit. Fluids, Vol 46, 238-244, 2008.
[14] S. González-Arias, F. J. Verónico-Sánchez, O. Elizalde-Solis, A. Zúñiga-Moreno, L. E. Camacho-Camacho, “An enhanced “first freezing point” method for solid–liquid–gas equilibrium measurements in binary systems ”, J. Supercrit. Fluids, Vol 104, 301-306, 2015.
[15] E. Bertakis, I. Lemonis, S. Katsoufis, E. Voutsas, R. Dohrn, K. Magoulas, D. Tassios, “Measurement and thermodynamic modeling of solid–liquid–gas equilibrium of some organic compounds in the presence of CO2 ”, J. Supercrit. Fluids, Vol 41, 238-245, 2007.
[16] R. M. Lemert, K. P. Johnston, “Solid-liquid-gas equilibria in multicomponent supercritical fluid systems ”, Fluid Phase Equilib, Vol 45, 265-286, 1989.
[17] 談駿嵩, “超臨界流體中之吸附與脫附 ”, 化工, Vol 41, 37-41, 1994.
[18] T. K. Fahim, I. S. M. Zaidul, M. R. Abu Bakar, U. M. Salim, M. B. Awang, F. Sahena, K. C. A. Jalal, K. M. Sharif, M. H. Sohrab, “Particle formation and micronization using non-conventional techniques- review ”, Chem. Eng. Process., Vol 86, 47-52, 2014.
[19] G. J. Griscik, R. W. Rousseau, A. S. Teja, “Crystallization of n-octacosane by the rapid expansion of supercritical solutions ”, J. Cryst. Growth, Vol 155, 112-119, 1995.
[20] 李金樹, 以超臨界二氧化碳流體脫除廢舊彈藥之TNT及其微粒化之研究. 國防大學理工學院: 2010.
[21] D. Kayrak, U. Akman, Ö. Hortaçsu, “Micronization of ibuprofen by ress ”, J. Supercrit. Fluids, Vol 26, 17-31, 2003.
[22] A. Diefenbacher, M. Türk, “Phase equilibria of organic solid solutes and supercritical fluids with respect to the ress process ”, J. Supercrit. Fluids, Vol 22, 175-184, 2002.
[23] J. P. Kohn, E. S. Andrle, K. D. Luks, J. D. Colmenares, “Phase equilibriums of ethylene and certain normal paraffins ”, J. Chem. Eng. Data, Vol 25, 348-350, 1980.
[24] M. A. McHugh, T. J. Yogan, “Three-phase solid-liquid-gas equilibria for three carbon dioxide-hydrocarbon solid systems, two ethane-hydrocarbon solid systems, and two ethylene-hydrocarbon solid systems ”, J. Chem. Eng. Data, Vol 29, 112-115, 1984.
[25] J. Hong, H. Chen, J. Li, H. A. Matos, E. G. de Azevedo, “Calculation of solid−liquid−gas equilibrium for binary systems containing co2 ”,Ind. Eng. Chem. Res., Vol 48, 4579-4586, 2009.
[26] E. Voutsas, K. Magoulas, D. Tassios, “Universal mixing rule for cubic equations of state applicable to symmetric and asymmetric systems: Results with the Peng−Robinson equation of state ”,Ind. Eng. Chem. Res., Vol 43, 6238-6246, 2004.
[27] E. Voutsas, V. Louli, C. Boukouvalas, K. Magoulas, D. Tassios, “Thermodynamic property calculations with the universal mixing rule for eos/ge models: Results with the Peng–Robinson EOS and a UNIFAC model ”, Fluid Phase Equilib, Vol 241, 216-228, 2006.
[28] Y. Shimoyama, B. Ng, “Effect of mixing rule and activity coefficient model on prediction of solid–liquid–gas equilibria for carbon dioxide + organic compound mixtures using Peng–Robinson equation of state and ge type mixing rule ”, Fluid Phase Equilib, Vol 357, 30-35, 2013.
[29] M. A. McHugh, J. J. Watkins, B. T. Doyle, V. J. Krukonis, “High-pressure naphthalene-xenon phase behavior ”,Ind. Eng. Chem. Res., Vol 27, 1025-1033, 1988.
[30] I. Kikic, M. Lora, A. Bertucco, “A thermodynamic analysis of three-phase equilibria in binary and ternary systems for applications in rapid expansion of a supercritical solution (RESS), particles from gas-saturated solutions (PGSS), and supercritical antisolvent (SAS) ”,Ind. Eng. Chem. Res., Vol 36, 5507-5515, 1997.
[31] D.-Y. Peng, D. B. Robinson, “A new two-constant equation of state ”, Ind. Eng. Chem. Fundam., Vol 15, 59-64, 1976.
[32] M. L. Michelsen, “A modified Huron-Vidal mixing rule for cubic equations of state ”, Fluid Phase Equilib, Vol 60, 213-219, 1990.
[33] C.-M. Hsieh, S.-T. Lin, “Prediction of liquid–liquid equilibrium from the Peng–Robinson+COSMOSAC equation of state ”, Chem. Eng. Sci., Vol 65, 1955-1963, 2010.
[34] L.-H. Wang, C.-M. Hsieh, S.-T. Lin, “Improved prediction of vapor pressure for pure liquids and solids from the PR+COSMOSAC equation of state ”,Ind. Eng. Chem. Res., Vol 54, 10115-10125, 2015.
[35] R.-M. Dannenfelser, S. H. Yalkowsky, “Estimation of entropy of melting from molecular structure: A non-group contribution method ”,Ind. Eng. Chem. Res., Vol 35, 1483-1486, 1996.
[36] G. M. Kontogeorgis, P. Coutsikos, “Thirty years with EOS/GE models—What have we learned? ”,Ind. Eng. Chem. Res., Vol 51, 4119-4142, 2012.
[37] M.Dekker, Supercritical fluid technology for drug product development: New York, 2004.
[38] W. M. Haynes, D. R. Lide, T. J. Bruno, Crc handbook of chemistry and physics : A ready-reference book of chemical and physical data, 2015.
[39] S.-T. Lin, S. I. Sandler, “A priori phase equilibrium prediction from a segment contribution solvation model ”,Ind. Eng. Chem. Res., Vol 41, 899-913, 2002.
[40] C.-M. Hsieh, S. I. Sandler, S.-T. Lin, “Improvements of cosmo-sac for vapor–liquid and liquid–liquid equilibrium predictions ”, Fluid Phase Equilib, Vol 297, 90-97, 2010.