跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黎秋玉
Le, Thi Thu Ngoc
論文名稱: Optical model for LED die operated at UVC range of wavelength around 275 nm
指導教授: 孫慶成博士
Vu-Tuan-Hung Le
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 83
中文關鍵詞: LEDUVC光源模型
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了針對UVC波段之光源進行的二階光學設計,此設計擁有較佳的光學利用率及高均勻度之表現。擁有精準的光源模型對於後端透鏡設計是非常重要的一步,本論文採用之LED光源的模型是以中場理論為基礎再透過光學模擬軟體ASAP輔助計算所建立,該光源模型透過實驗與模擬計算NCC高達99%以上,證明該模型之是足夠精準的,最後利用ASAP進行光源之光追跡模擬設計與優化二階光學元件。在論文中我們根據光學利用率和均勻度兩項指標設計了兩種類型的透鏡,分別為TIR透鏡和菲涅爾透鏡。兩種透鏡在設計完成並打樣後還進行了相關光學表現之量測,並在最後針對兩種設計之量測結果再進行討論與評估。


    This thesis presents the optical model for a type of LED emitting a wavelength of the 275 nm and the design of lenses that increase the ability to direct light into a given target area, which satisfy the requirements such as uniformity, optical utilization factor (OUF). By using high-precision simulation software, Advanced Systems Analysis Program (ASAP), the light model for LED is established in simulation and verification by empirical measurement. Light models of LEDs in simulations and experiments that match up to 99% are considered standard. This model can be used to design lenses for LED and predict the optical performance of light when passing through the lens in the simulation. In this work, we design two types of lenses for LED: TIR lens and Fresnel Lens based on the requirements of optical utilization factor (OUF) and uniformity in the target area. After the design, the lenses manufacturing process at the factory are conducted. Through experimental measurements, we obtain the optical performance of light. Finally, we compare the results achieved between simulation and experiment and discussion.

    Contents Abstract II Figure caption V Table caption XI 1 Introduction 1 1.1 UVC light sources 1 1.2 Advantages of UVC LED 3 1.3 Motivations and thesis overview 4 2 Theory 6 2.1 Light emitting diode (LED) 6 2.2 Theory about optical model and normalized cross correlation for UVC LED 8 2.3 Analysis of lens design theory for UVC LED 12 2.3.1 Basic Principles 12 2.3.2 The Law of Reflection 12 2.3.3 Law of Refraction and the total internal reflection 13 2.3.4 Fresnel equation 15 3 Die Bonding and Optical Model for UVC LED 17 3.1 Die bonding for UVC LED 17 3.1.1 The UVC LED is used for experiment 17 3.1.2 Die bonding processes for UVC LED 18 3.2 Light field modeling for UVC LED 21 3.2.1 One-dimension intensity distribution measurement for UVC LED 21 3.2.2 Simulation of 1D intensity distribution for UVC LED 22 3.2.3 Optical model and normalized cross correlation for UVC LED 24 4 Design the Total Internal Reflection (TIR) Lens and Fresnel Lens for UVC LED in Simulation 26 4.1 TIR lens 28 4.1.1 Analysis of TIR lens design 28 4.1.2 Optical utilization factor (OUF) 30 4.1.3 Uniformity 32 4.2 Fresnel lens 33 4.2.1 Analysis of Fresnel lens design 33 4.2.2 Optical utilization factor (OUF) 36 4.2.3 Uniformity 38 5 Experimental Measurements and Results 40 5.1 TIR lens 40 5.1.1 Measurement of the light through TIR lenses41 5.1.1.1 Experimental setup 41 5.1.1.2 Results 43 5.1.2 Measurement of the optical utilization factor (OUF) 44 5.1.2.1 Measurement of the flux through TIR lenses 44 5.1.2.2 Measurement of the flux on the target 47 5.1.3 Measurement of the uniformity of the light patterns through the TIR lenses 49 5.1.3.1 Experimetal setup 49 5.1.3.2 Results 50 5.2 Fresnel lens 51 5.2.1 Measurement of the light through Fresnel lenses 52 5.2.1.1 Experimental setup 52 5.2.1.2 Results 52 5.2.2 Measurement of the flux through Fresnel lenses 54 5.2.2.1 Measurement of the flux through Fresnel lenses 54 5.2.2.2 Measurement of the flux on the target 56 5.2.3 Measurement of the uniformity of the light patterns throughthe Fresnel lenses 58 5.2.3.1 Experimetal setup 58 5.2.3.2 Results 58 5.3 Discussions 60 6 Conclusions and Future Works 62 6.1 Conclusions 62 6.2 Future works 62 References 63

    References

    1.Marketech International Inc, “Applications of UltraViolet LEDs and Safety Considerations,” https://www.azooptics.com/Article.aspx?ArticleID=1087.
    2.T. Koutchma, Ultraviolet LED Technology for Food Applications: From Farms to Kitchens. (Academic Press, Canada, 2019).
    3.S. E. Beck, H. Ryu, L. A. Boczek, J. L. Cashdollar, K. M. Jeanis, J. S. Rosenblum, R. L. Oliver, and G. L. Karl, “Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy,” Water research, 109, 207-216 (2017).
    4.H. Cheng, C. Xu, X. Jing, and H. Y. Tam, “Design of compact LED free-form optical system for aeronautical illumination,” Appl. Opt. 54, 7632-7639 (2015).
    5.M. Kneissl, “A brief review of III-nitride UV emitter technologies and their applications. In III-nitride ultraviolet emitters,” Springer, 1-25 (2016).
    6.E. A. Boardman, L. S. W. Huang, J. J. Robson-Hemmings, T. M. Smeeton, S. E. Hooper, and J. Heffernan, “Deep ultraviolet (UVC) laser for sterilisation and fluorescence applications,” Sharp technical report, 31 (2012).
    7.A. Gross, F. Stangl, K. Hoenes, M. Sift, and M. Hessling, “Improved drinking water disinfection with UVC-LEDs for Escherichia coli and Bacillus subtilis utilizing quartz tubes as light guide,” Water, 7, 4605-4621 (2015).
    8.S. Kasap, “Pn junction devices and light emitting diodes,” http://www.phy.olemiss.edu/~cremaldi/PHYS417/PNJunctionDevices.pdf.
    9.D. A. Neamen, Semiconductor physics and devices: basic principles. (McGraw-Hill, New York, 2012).
    10.“Fresnel Equation,” http://en.wikipedia.org/wiki/Fresnel_ equations.
    11.C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, “Analysis of the far-field region of LEDs,” Opt. express, 17, 13918-13927 (2009).
    12.C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
    13.E. Hecht, Optics, 4th eds. (Addison Wesley Longman Inc, 1998).
    14.A. Cook, and R. Pappafotis, “The Laws of Reflection and Refraction,” https://www.physast.uga.edu/~zhaoy/Reflection.pdf.
    15.“Snell's law,” https://en.wikipedia.org/wiki/Snell%27s_law.
    16.“The law of refraction,” https://opentextbc.ca/physicstestbook2/chapter/the-law-of-refraction/.
    17.“Total internal reflection,” https://en.wikipedia.org/wiki/Total_internal_reflection.
    18.“Physical Sciences Grade 11,” https://www.siyavula.com/read/science/grade-11.
    19.“Optical Fiber Tutorial - Optic Fiber - Communication Fiber,” https://www.fiberoptics4sale.com/blogs/archive-posts/95146054-optical-fiber-tutorial-optic-fiber-communication-fiber.
    20.H. Hirayama, N. Noguchi, and N. Kamata, “222 nm deep-ultraviolet AlGaN quantum well light-emitting diode with vertical emission properties,” Appl. physics express, 3, 032102 (2010).
    21.H. Ji, A. Sarua, M. Kuball, J. Das, W. Ruythooren, M. Germain, and G. Borghs, “Flip chip mounting for improved thermal management of AlGaN/GaN HFETs”, MRS Online Proceedings Library Archive, 892 (2005).
    22.E. F. Schubert, T. Gessmann, and J. K. Kim, “Light emitting diodes,” Kirk-Othmer Encyclopedia of Chemical Technology, (2000).
    23.G. Parish, “Growth and Characterization of Aluminum Gallium Nitride: Gallium Nitride Ultraviolet Detectors,” Doctoral dissertation, University of California, Santa Barbara, (2001).
    24.S. J. Chang, W. S. Chen, S. C. Shei, T. K. Ko, C. F. Shen, Y. P. Hsu, C. S. Chang, J. M. Tsai, W. C. Lai, and A. J. Lin, “Highly reliable high-brightness GaN-based flip chip LEDs,” IEEE, 30, 752-757 (2007).
    25.“Radiant intensity,” https://en.wikipedia.org/wiki/Radiant_intensity.
    26.“International Light Technology company website, Measurement Geometries (Chapter 7),” https://www.intl-lighttech.com/measurement-geometries-chapter-7-light measurement-tutorial.
    27.H. Venugopalan, “UVC LEDs For Biofilm Prevention,” https://www.wateronline.com/doc/uvc-leds-for-biofilm-prevention-0001>.
    28.M. A. Moiseev, and L. L. Doskolovich, “Design of TIR optics generating the prescribed irradiance distribution in the circle region,” JOSA A 29, 1758-1763 (2012).
    29.C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, and Y. C. Chen, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Sol. St. Light. 1, 19 (2014).
    30.Y. Hu, M. R. Luo, and Y. Yang, “A study on lighting uniformity for LED smart lighting system,” IEEE, 127-130 (2015).

    QR CODE
    :::